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Abstract

The six published papers making up the main body of this thesis aim to communicate 

the many benefits provided by a combined, model-based, analysis of choice and 

response time (RT). Consideration of both choice and RT is important largely because 

the two naturally trade with each other – fast responses are error-prone while slow 

responses are more often correct. Quantitative models based on evidence accumulation 

allow for a combined analysis of choice and RT. These so-named choice RT models take 

into account both the speed and accuracy of responses to produce quantities associated 

with performance, response caution, bias, and other elements of decision making. The 

first section contains tools sufficient to carry out a model-based choice RT analysis. The 

first chapter of the thesis provides software for the collection of both choice and RT data 

from vocal responses. The second chapter contains software for applying a particular 

choice RT model to data. Choice RT models can be used to better understand 

differences in the way that decisions are made, say between different groups or across 

different experimental conditions. This powerful ability, however, requires many 

important assumptions be made. The second section of the thesis deals with issues 

surrounding the assumptions made about the effect of experimental manipulations on 

the parameters of choice RT models. The third chapter demonstrates the ramifications of 

such assumptions, while the fourth chapter shows how careful choice RT users must be 

when making these assumptions. The third and final section details a process model of 

both choices and RT in absolute identification, in which the use of a choice RT model as 

a description of the decision process is integral. The fifth chapter outlines the process 

model and the sixth chapter tests a prediction of the model which highlights the 

importance of a quantitative account of both choice and RT in absolute identification. 
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Introduction

The Speed-Accuracy Trade-Off

Much of experimental psychology uses accuracy and response time (RT) data to make 

inferences about the processes underlying performance. The overarching theme of this 

thesis is that both accuracy and RT are important and should be considered together 

when making these types of inferences. One of the main reasons we must consider both 

variables is the potential trade-off between how long a response takes to make and the 

likelihood that the response will be correct. The well-established speed-accuracy trade-

off states that responses made quickly are more likely to be incorrect than responses 

which are slower (e.g. Johnson, 1939; Luce, 1986; Pachella, 1974; Schouten & Bekker, 

1967; Wickelgren, 1977). This phenomenon can make it very risky to interpret just one 

of the two variables without considering the other. For example, imagine our aim was to 

compare two different populations (group A and B, say) on their performance in a 

particular task. Imagine that group A was able to respond, on average, in 500ms, faster 

than group B, who had a mean RT of 1000ms. It is tempting to infer that group A were 

better at the task than group B. What if, however, we subsequently found out that group 

A made more errors (15% incorrect responses) than group B (5% incorrect responses). 

Because group A were faster but made more errors than group B it is possible that both 

groups performed the task equivalently, but that group B was more cautious. In other 

words, it is possible that if group A were more cautious, such that they too made errors 

only 5% of the time, that their mean RT would also be 1000ms. 

The previous example is a simple demonstration of why experimental 

psychologists should collect and consider both accuracy and RT data. Unfortunately, 

even when both accuracy and RT data are collected, it is difficult to quantify the 
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difference between group A and group B in terms of both RT and accuracy. For 

example, imagine that group B remained 500ms slower than group A but now made 

errors 10% of the time, only 5% better than group A. Would we now think of group A as 

better than group B? What if group B made incorrect responses on 14% of trials – only 

1% better, but still 500ms slower than group A? This question is further complicated 

when one considers that the trade-off between speed and accuracy looks exponential 

(McElree & Dosher, 1989), suggesting that the size of the trade-off between the speed 

and accuracy of responses is a function of how accurate the responses are, or how long 

they take to make. 

The standard approach of submitting accuracy and mean RT to Analysis of 

Variance (ANOVA) hypothesis tests does not help solve this problem of quantification 

of differences. At best, an ANOVA might reveal that group A and group B do not differ 

significantly in one of the response variables. However, because of the shape of the 

speed-accuracy trade-off function, when accuracy is close to ceiling then even small, 

non-significant, changes in accuracy values can cause large changes in RT. In any case, 

our problem of quantifying the difference between groups for a given set of accuracy 

and RT data remains unsolved. For example, the question remains as to how much 

better group A is compared to group B when they are equally accurate, but group A 

performs 500ms faster on average.

Looking just at mean RT and accuracy rates also fails to identify why differences 

between groups occur. For example, simply observing a 500ms difference in mean RT 

between two groups gives us little information about why the difference has occurred. 

In particular, we can not distinguish between an explanation which says the difference 

in mean RT is due to participants' performance, or simply because one group's members 
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took longer to press the response buttons. The situation is further complicated when 

there is a potential trade-off between the speed and accuracy of responses. In such cases 

there is a question of whether response caution is the sole cause of differences in RT 

between groups, or if there are also underlying differences in performance between the 

groups. 

The key to understanding the underlying causes of differences in accuracy and 

RT comes from analysing not just mean RT, but entire RT distributions for correct and 

incorrect responses (as well as how often errors are made). The shape, scale and 

location of RT distributions can be used to infer about how decisions are made. For 

example, if we observed that all responses for one group were 200ms slower than for 

another group (i.e. a 200ms shift in RT distributions), then we might conclude that the 

differences were due to some constant factor not related to the decision process itself, 

but to external processes such as the time taken to encode the stimulus, or the difference 

in time taken to press the response buttons. 

A Model-Based Solution

There are many quantitative, cognitive models which distil accuracy and RT 

distributions into latent variables representing the processes underlying relatively simple 

decisions. The most successful models of choice and RT (choice RT models) are the 

evidence accumulation (or sequential sampling) models, and though many variants of 

this type of model exist (e.g. the diffusion model, Ratcliff, 1978; the EZ diffusion 

model, Wagenmakers, van der Maas, & Grasman, 2007; the Poisson counter model, 

Pike, 1966; Van Zandt, Colonius, & Proctor, 2000; the accumulator model, Smith & 

Vickers, 1988; the leaky competing accumulator model, Usher & McClelland, 2001; the 

ballistic accumulator model, Brown & Heathcote, 2005; and the linear ballistic 
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accumulator model, Brown & Heathcote, 2008), they all share a basic framework for 

describing decisions – evidence accumulation models assume that participants sample 

information as they attend to a particular stimulus. This information is then taken as 

evidence for one of the competing responses. Evidence is accumulated until it reaches 

some threshold level for one of the potential responses. That response is then chosen, 

with the time taken for evidence to reach the threshold being the decision time 

component of the RT (Stone, 1960). Since errors occur even in the most simple of 

decisions, most evidence accumulator models include variability, or noise, at some level 

of the decision process, because this variability means that on some trials evidence for 

incorrect responses will reach threshold before evidence for the correct response. 

Choice RT models summarise RT distributions for correct and incorrect 

responses using a number of latent variables which represent processes underlying how 

decisions are made. Of these variables, three are common across all variants of evidence 

accumulation models and are usually of interest when describing how individuals are 

responding (Wagenmakers et al., 2007). The three variables are rate of processing, 

response caution and non-decision time. 

Rate of processing, often simply called drift rate, refers to the rate at which 

evidence for a response is accumulated, and is a measure of how well the task is being 

performed. To see this, consider a small and a large drift rate; a small drift rate means 

there is little evidence that a particular response should be made. If this response is the 

true correct response on a particular trial, then evidence accumulation happens slowly 

for the correct response, and therefore increases the probability that any noise in the 

process will lead to an error. Small drift rates occur when the task is difficult or when 

the participant is performing poorly. On the other hand, a large drift rate implies that 
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there is a large amount of evidence indicating that the response should be made. Large 

drift rates, therefore, result in fast and accurate responses, while small drift rates result 

in slow and error-prone responses. 

Response caution refers to how much evidence is required before a response is 

made, and is largely responsible for producing a trade-off between the speed and 

accuracy of responses. In general, by setting a large threshold for how much evidence is 

required before making a response, a participant will wait longer to make a decision. 

Waiting this extra time means that the response is more likely to be correct, as noise in 

the evidence accumulation process will be integrated out with time. When the threshold 

is set low, however, responses will be faster but more influenced by noise in the system, 

and hence more likely to be incorrect. 

Non-decision time refers to the time taken for all aspects of RT which are not 

strictly part of the evidence accumulation process. This parameter exists because it is 

impossible to measure exactly how long it takes for a person to accumulate evidence. 

Instead, the standard RT recorded by experimenters is typically composed of decision, 

or accumulation, time as well as other non-decision time components such as the time 

taken to perceive and encode the stimulus, and the time taken to execute a motor 

response once a response is selected to be made. The non-decision time is added to the 

decision time produced by the evidence accumulation process to give a predicted RT. 

Though all evidence accumulation models have some instantiation of these three 

latent variables, their exact form within any particular model varies substantially. The 

different choice RT models also make considerably different assumptions about what 

noise is necessary to account for accuracy and RT data. What follows is an overview of 

some of the more popular choice RT models, with particular focus on two things: how 
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the three aforementioned latent variables are implemented, and which sources of noise 

are assumed to be important enough to model.

Review of Choice Response Time Models

Discrete Beginnings

One of the first attempts to model RT distributions was the random walk model

(Laming, 1968; Link & Heath, 1975; Stone, 1960). In a random walk process, time 

passes in discrete time steps of length Δt. During each time step some evidence is 

extracted from the environment suggesting which of the two possible responses (A or B) 

is correct. This evidence then increments some evidence accumulation counter, say x, 

such that if the evidence supports response A the value of x increases, and if the 

evidence supports response B then x decreases. When x equals some threshold value, 

say a for response A and 0 for response B, then that particular response is made, and the 

number of time intervals of size Δt determines the time taken for the decision to be 

made. 

Evidence accumulation begins at some intermediate value, 0 < z < a. If there is 

no bias towards either responding A or B then z = a/2, the midpoint between the two 

response threshold values. If there is bias towards one particular response then evidence 

will start closer to that response threshold value; if there is bias for responding A then z 

> a/2 and if there is bias for responding B then z < a/2. During each time step the 

amount of evidence added to or subtracted from x is sampled from a normal distribution 

with mean δ and standard deviation s1. This δ value is the drift rate parameter in a 

random walk model because it indicates the rate at which evidence accumulates towards 

1 s in the random walk, and diffusion models, is generally set fixed to an arbitrary value. This parameter 
is fixed because all choice RT models have a scaling property which means that a subset of their 
parameters can be multiplied by a constant to give the same predictions. All choice RT models, therefore, 
have to have one parameter be fixed as constant so that parameters can be estimated from data. Chapter 4 
of this thesis is concerned mainly with this scaling property and how the scaling parameter can be used.
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boundary a or 0. A positive drift rate indicates more evidence for response A, while a 

negative drift rate suggests more evidence for response B. Drift rates closer to zero lead 

to slower and more error-prone responses because the accumulation process is 

influenced predominantly by the variability in drift rate between time steps. In other 

words, when drift rate is small then x tends to reach thresholds a or 0 due to random 

fluctuations in the accumulation of evidence rather than due to incoming information 

from the environment. In contrast, when drift rate is large then variability in drift, s, will 

have smaller influence and responses will tend to be correct. 

The size of a reflects response caution in the random walk model, such that if a 

is small then little evidence is required to trigger a response, and errors due to drift 

variability will occur often. On the other hand, if a is large then the effects of variability 

in drift rate will integrate out and responses will be more often correct. Non-decision 

time in the random walk model, Ter, is added to the decision time to give the standard 

RT. 

The Diffusion Model

Ratcliff (1978) used a continuous time version of the random walk model, such 

that Δt→0, to account for performance in recognition memory tasks. The accumulation 

of evidence in the continuous version of a random walk model mimics a Wiener 

process, or Brownian motion, and is usually referred to as a diffusion model. To 

accommodate the fact that error responses tended to be slower than correct responses in 

recognition memory experiments (where accurate responses were preferred over fast 

ones), Ratcliff (1978) added the additional assumption that drift rate, δ, varied from 

trial-to-trial according to a normal distribution with mean ν and standard deviation η. 

The addition of trial-to-trial variability in drift rate allowed Ratcliff’s version of a 
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diffusion model to account for slow error responses (an explanation of why this works is 

beyond the scope of this review, but see Ratcliff, 1978 for a detailed explanation). 

Ratcliff and Rouder (1998; see also Ratcliff, Van Zandt & McKoon, 1999; Smith 

& Vickers, 1988) showed that error responses from the one experiment could be both 

faster and slower than correct responses when the decisions were high and low in 

accuracy, respectively. To accommodate this pattern of error RT using a diffusion 

model, Ratcliff and Rouder (1998) added an additional source of variability to the 

diffusion model of choice RT: trial-to-trial variability in the starting point of evidence 

accumulation. Prior to Ratcliff and Rouder (1998) it was assumed that on each trial that 

the evidence accumulator began at a fixed point z. Ratcliff and Rouder (1998) showed 

that a diffusion model could predict fast errors if start-point, z, was allowed to vary 

according to a uniform distribution with centre z and range sz. Having both trial-to-trial 

variability in start point and drift rate allows a diffusion process to produce both faster 

and slower error RTs for easy and hard conditions, even within a single block of 

experimental trials. Note that Laming (1968) incorporated start-point variability into a 

random walk model to account for fast errors. 

A third source of trial-to-trial variability was added to the diffusion model of 

choice RT by Ratcliff and Tuerlinckx (2002) to explain changes across experimental 

conditions in the very fastest responses made by participants. The authors showed that a 

diffusion model predicts that regardless of drift rate, the fastest responses made by 

participants all take a similar amount of time (sometimes called a “flat leading edge” of 

the RT distribution). They demonstrated that the diffusion model gave much better 

account of empirical data when non-decision time was allowed to vary according to a 

uniform distribution with centre Ter and range st. Allowing non-decision time to vary 
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across trials also helped the diffusion model account for performance in the lexical 

decision task, where relatively large changes in the leading edge were observed across 

stimulus-based conditions (Ratcliff, Gomez, & McKoon, 2004; Wagenmakers, Ratcliff, 

Gomez, & McKoon, 2008). 

A diffusion model with these three sources of trial-to-trial variability is now the 

most successful and widely used model of choice RT, and is due largely to the work of 

Ratcliff and colleagues (in recognition, this particular implementation of the diffusion 

model is often called “the Ratcliff diffusion model”, Wagenmakers, 2009). There are 

alternative diffusion models, such as the Ornstein-Uhlenbeck (OU) model (Busemeyer 

& Townsend, 1992, 1993; Roe, Busemeyer, & Townsend, 2001). This differs from the 

already described (Wiener) diffusion model such that the evidence total, x, decays away 

from response thresholds as decision time increases. Ratcliff and Smith (2004) showed 

that the OU model did not provide as good an account of data as the Wiener diffusion 

model, and that estimates of the decay parameter often approached zero, making the OU 

model equivalent to the Wiener model.

Recently, Wagenmakers et al. (2007) provided simple methods for estimating 

rate of processing, response caution and non-decision time parameters for a Wiener 

diffusion model. This method, called the EZ-diffusion model, involves the estimation of 

the a, δ and Ter parameters via method of moments using the mean and variance of RT 

and the percentage of correct responses. The EZ-diffusion model, unlike the Ratcliff 

diffusion model, does not assume response bias nor between-trial variability. Further 

discussion of the EZ-diffusion model is contained in a later section.

Both random walk and diffusion models are examples of single accumulator 

models, as evidence is tracked in a single accumulator. There also exist a set of multiple 
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accumulator models which use an accumulator for each possible response. Before 

moving on to a discussion of multiple accumulator models of choice RT, I wish to note 

that this distinction between models in terms of the number of accumulators, is largely 

for explanatory purposes. Recall that in a random walk, or diffusion model, that 

evidence for response A is perfectly negatively correlated with evidence for response B. 

Thus, the diffusion model can be re-interpreted as a multiple accumulator model simply 

by having two accumulators wherein an increase of evidence in accumulator A causes 

an equivalent decrease of evidence in accumulator B. Note, however, that the diffusion 

model can not be extended to model choices between more than two alternatives 

without adjustments to the model’s framework and core assumptions. 

Multiple Accumulator Models.

The recruitment model (LaBerge, 1962) was one of the first choice RT models to 

use a separate accumulator for each possible response. In the recruitment model time 

passes in discrete time periods and on each passage of time a unit of evidence is placed 

in just one of the available accumulators. Thus, in LaBerge’s recruitment model both 

time steps and the increment in evidence are discrete. The recruitment model fails to 

account for the shapes of empirical RT distributions for correct and error responses, 

particularly for conditions in which responses are slow. I will cover two alternatives 

related to the recruitment model. First, the accumulator model (Smith & Vickers, 1988; 

Vickers, 1970), which also assumes discrete, equally-spaced time periods, but that the 

amount of evidence incremented between these time periods is sampled from a 

continuous distribution. Second, the Poisson counter model (LaBerge, 1994; Pike, 1966, 

1973; Smith & Van Zandt, 2002; Townsend & Ashby, 1983; Van Zandt et al., 2000), 

assumes the opposite, that the amount of evidence accumulated on each trial is fixed but 
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that the time intervals in which evidence arrives varies from step-to-step. 

In the accumulator model (Smith & Vickers, 1988, 1989; Vickers, 1970, 1979) 

evidence is accumulated at equally-spaced time steps. At each time step how much 

evidence is drawn from the environment is sampled from a normal distribution. This 

evidence value is then compared to a criterion value, if the evidence is larger than the 

criterion then the difference between the criterion and the evidence value is added to 

counter B, and if the evidence is smaller than the criterion then counter A is increased 

by the same difference. When the evidence in either counter reaches a response 

threshold then that response is made, and the time taken to make the response is the 

number of time steps multiplied by a constant which converts time steps to seconds. 

The distance of the mean of the normal distribution of evidence values from the 

criterion value is equivalent to the drift rate in the diffusion model, in that it reflects the 

rate of processing – when the mean is very different from the criterion value then 

accumulation of evidence will be fast. The response threshold parameter in the 

accumulator model reflects response caution, and non-decision time parameter in the 

accumulator model is equivalent to that in the diffusion model. Indeed, in all of the 

choice RT models to be discussed, non-decision time is implemented in a similar way. 

Smith and Vickers (1989) showed that an accumulator model with three sources 

of between-trial variability provided a good account of empirical data. Firstly, the mean 

of the evidence accrual distribution was assumed to vary from trial-to-trial according to 

a normal distribution. Secondly, non-decision time was assumed to vary across trials. 

Thirdly, the response threshold was allowed to vary from trial-to-trial according to an 

exponential distribution. Other distributions have been used to describe variability in 

threshold, though the exponential distribution was found to provide the best fit to 
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empirical data (Ratcliff & Smith, 2004; Smith & Vickers, 1988,1989). 

In the Poisson counter model (LaBerge, 1994; Merkle & Van Zandt, 2006; Otter, 

Allenby, & Van Zandt, 2008; Pike, 1973; Smith & Van Zandt, 2002; Townsend & 

Ashby, 1983; Van Zandt et al., 2000) it is assumed that equal amounts of evidence arrive 

on each time step, but that the time steps vary in size. The time between when evidence 

arrives in each accumulator is assumed to be exponentially distributed with separate rate 

parameters for each possible response. Because the time between evidence arrival is 

exponential, the rate at which evidence increases in each accumulator is distributed 

according to a Poisson process. The evidence accumulation process continues until 

evidence in one of the accumulators reaches a response threshold. 

The rate at which evidence arrives for each accumulator is the rate of processing

parameter in the Poisson counter model. Response caution, like in the accumulator 

model, is summarised using the response threshold parameter. As an aside, in all 

multiple accumulator models, bias is implemented using different response threshold 

values for different accumulators. For example, if there was bias for response A then the 

threshold for accumulator/counter A could be made smaller than the threshold for 

accumulator B. This would mean that less evidence is required to make response A than 

response B.

Three sources of between-trial variability have been added to the Poisson 

counter model (e.g. Ratcliff & Smith, 2004). Firstly, like the diffusion and accumulator 

model, non-decision time was assumed to vary. Secondly, the rate of arrival of 

information for each counter was assumed to vary across trials, though the form of this 

variability differs somewhat from that in previously discussed models (for details see 

Ratcliff & Smith, 2004). Thirdly, response thresholds were assumed to vary according 
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to a geometric distribution. It has been shown that despite the addition of these sources 

of variability the Poisson counter model is unable to produce both fast and slow errors 

within experimental blocks (Ratcliff & Smith, 2004; Van Zandt et al., 2000). Ratcliff 

and Smith (2004) did show, however, that the accumulator model and the Wiener and 

OU diffusion models were capable of predicting this pattern. 

In both the Poisson counter model and accumulator model, evidence in any one 

accumulator accrues independently of evidence in other accumulators. In the single 

accumulator models (such as Ratcliff’s diffusion) the evidence for one response is 

assumed to be perfectly negatively correlated with evidence for the alternative response. 

Usher and McClelland (2001) proposed the leaky competing accumulator model, which 

parameterises the amount of inhibition between accumulators, and hence can mimic 

both independent and inversely related evidence accumulation. The leaky competing 

accumulator model also differs from the accumulator and Poisson counter model in that 

it assumes that the amount of evidence accrued in an accumulator decays over time (cf. 

McClelland, 1991; Diederich, 1997). 

The leaky competing accumulator model (Usher & McClelland, 2001) assumes 

that evidence from the environment drives an accumulator for each possible response. 

This input from the environment is assumed to follow a Wiener process, as in the 

diffusion model. This makes the rate of accumulation of evidence due to input from the 

environment equivalent to drift rate in the diffusion model, and is, therefore, considered 

the rate of processing parameter within the model. Like the OU diffusion model, the 

leaky competing accumulator model assumes that the amount of evidence in any 

accumulator decays at a rate proportional to its current evidence level. This leakage was 

justified by Usher and McClelland using both empirical (e.g. Pietsch & Vickers, 1997) 
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and neural (e.g. Amit, 1989) evidence. To counteract the decay process, the leaky 

competing accumulator model also includes a self-excitatory process, which means that 

evidence in any accumulator also tends to increase at a rate proportional to its current 

amount of evidence. The model also includes competition between accumulators, such 

that evidence in one accumulator inhibits the rate of evidence accrual in the other 

accumulator(s), again at a rate proportional to the current amount of evidence. Like the 

other choice RT models discussed, the leaky competing accumulator model makes a 

response once evidence in one accumulator reaches a set response threshold, which acts 

as the response caution parameter in the model.

Usher and McClelland (2001) showed that the leaky competing accumulator 

model does not require trial-to-trial variability in drift rate to produce slow error RTs. 

Ratcliff and Smith (2004) showed that this was largely due to inhibition between 

accumulators; such that removing competition between accumulators means that the 

model can no longer predict slow error RTs. Usher and McClelland also showed that the 

model is able to predict fast error RTs by assuming that the start point of evidence in 

any accumulator varies from trial-to-trial (cf. Ratcliff & Rouder, 1998).

The leaky competing accumulator model can mimic, as a result of its

architecture, the Ratcliff (i.e. Wiener) diffusion model and the OU diffusion model. In

particular, the leaky competing accumulator looks like a Wiener diffusion model when

inhibition is high and leakage and self-excitation are close to zero. The model mimics 

an OU diffusion model when both inhibition and leakage are high. This is largely 

because the rate of accumulation of evidence due to input from the environment follows 

a Wiener process. However, because the leaky competing accumulator model consists of 

a race between multiple accumulators, the model never truly becomes either form of the 
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single accumulator diffusion model. We now consider two recent models of choice RT 

which assume no variability in the accumulation of evidence (i.e. that accumulation of 

evidence is ballistic). 

Ballistic Models.

Brown and Heathcote (2005) showed that a simplified version of the leaky 

competing accumulator model, the ballistic accumulator (BA) model, was able to 

account for all benchmark choice RT phenomena – the shape of RT distributions, the 

speed-accuracy trade-off, as well as both fast and slow errors. The only difference 

between the BA and Usher and McClelland’s (2001) leaky competing accumulator 

model is that there is no moment-to-moment variability in the evidence accumulation 

process. In other words, evidence from the environment was not assumed to follow a 

Wiener process, but was assumed to be noiseless (hence, “ballistic”). Brown and 

Heathcote (2005) showed that with between-trial variability in the rate at which 

evidence accumulates (drift rate) and the start point of evidence accumulation, passive 

decay and self-excitation of accumulated evidence, and lateral inhibition between 

accumulators that the BA model was able to accommodate empirical data from a simple 

discrimination task. 

Further to this, Brown and Heathcote (2008) showed that an even simpler 

version of the BA model, the linear ballistic accumulator (LBA) model, in which 

accumulation was assumed to be free of leakage, excitation and competition, was 

equally capable of capturing the important empirical choice RT data. The LBA assumes 

that evidence accumulates for each response at a fixed, linear rate (the drift rate) until 

evidence in one accumulator reaches a response threshold. The model assumes two 

sources of between-trial variability – in the start point of evidence and in drift rate. The 
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mean of the drift rate distribution is the rate of processing parameter in the LBA. 

Response caution in the LBA is a function of the difference between the response 

threshold and the maximum position from which evidence accumulation in any 

accumulator could possibly begin. Brown and Heathcote (2008) demonstrated, quite 

surprisingly, that despite not including leaky or self-exciting accumulation, competition 

between accumulators, between-trial variability in non-decision time, and moment-to-

moment variability in evidence accumulation, the LBA is capable of accounting for the 

shape of RT distributions, the speed-accuracy trade-off, as well as the relative speed of 

errors. 

Despite their differences in architectures, most of the choice RT models just 

described have parameters which share an interpretation about the processes underlying 

simple decisions. These models are often applied to data in order to better understand 

the effect of an experimental manipulation. Which parameters must vary across the 

different conditions of the manipulation in order to explain the observed data gives 

insight into which aspects of the decision process are thus affected. An example may 

make this clearer, imagine we are interested in whether how easily a word can be 

identified is influenced by its frequency of use, and so we do a lexical decision task 

using low and high frequency stimuli. This results in accuracy and RT data which differ 

for low and high frequency words. Which parameters of a choice RT model need to 

differ between low and high frequency conditions to explain the observed differences in 

RT distributions reveal which latent variables (e.g. response caution) are affected by the 

frequency of a word. 

The general approach of using the parameters of quantitative models to describe

differences that underlie empirical data has been dubbed “cognitive psychometrics” 
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(Batchelder, 1998; Batchelder & Riefer, 1999; Riefer, Knapp, Batchelder, Bamber, & 

Manifold, 2002). Choice RT models have been used extensively for this purpose (see 

below for some examples), and the popularity of this particular use of choice RT models 

seems to be increasing. Indeed, one of the fundamental aims of this thesis is to help 

provide the tools needed to carry out cognitive psychometrics with choice RT models. 

For example, Chapter One contains software for collecting data suitable for choice RT-

based cognitive psychometrics (Donkin, Brown & Heathcote, 2009a). 

Increasing Availability

In recent years, with the benefits of cognitive psychometrics becoming more 

apparent to those outside the field of quantitative psychology, there have been several 

valiant efforts to make the model fitting process more accessible. Some early attempts 

included written guides and tutorials on fitting RT distributions (Ratcliff & Tuerlinckx, 

2002; Smith, 2000; Van Zandt, 2000). Taking a slightly different approach, 

Wagenmakers et al. (2007) offered the EZ-diffusion model as a simple way to estimate 

parameters for a choice RT model. Wagenmakers et al. provided relatively simple 

formulae that transform mean RT, variance of RT and the proportion of correct 

responses into estimates of the drift rate, response threshold and non-decision time of a 

Wiener diffusion process. To calculate these parameters Wagenmakers et al. assume that 

the EZ-diffusion model must be unbiased and have no between-trial variability (i.e. in 

drift rate, start point or non-decision time). Such a simplification means that the model 

no longer gives a full account of benchmark choice RT data. In practice, however, this 

cost is offset by the fact that researchers in applied areas outside of quantitative 

psychology benefit greatly from being able to model their data using relatively simple 

calculations which require no iterated fitting.
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As Wagenmakers et al. (2007), Ratcliff (2008) and Wagenmakers, van der Maas,

Dolan, and Grasman (2008) discuss, there are some unwanted downsides to having the

EZ-diffusion model be so much simpler than the full Ratcliff diffusion model. 

Wagenmakers et al. (2008) and Grasman, Wagenmakers, and van der Maas (2009) 

addressed some of these issues in their respective versions of the model,  Robust-EZ 

and EZ2. In particular, the Robust-EZ version of the model answered the complaint 

made by Ratcliff that the parameters returned by the EZ-diffusion model were sensitive 

to the existence of outliers. Wagenmakers et al. (2008) made the EZ-diffusion model 

into a mixture model which modelled contaminant responses, which allowed for clean 

parameter estimation. Grasman et al. (2009) provided the EZ2 model which models 

response bias. The EZ2 fitting software also allows for parameters to be fixed as 

constant across experimental conditions – something missing from the original EZ-

diffusion model which forced the experimenter to estimate all parameters across all 

experimental conditions. Importantly, all of these changes came without the cost of a 

large increase in the complexity of the fitting software. Moreover, the EZ2 software 

remains very simple to use and fits are generally quick enough to be done using an 

interactive web page. Indeed, as Wagenmakers et al. (2008) point out, the EZ-diffusion 

and its subsequent improvements exist simply to make choice RT models more 

accessible to a wider audience. 

Around the same time as the EZ-diffusion model became available, software 

which made it easier to use the full Ratcliff diffusion model also began to appear: 

DMAT (Vandekerckhove & Tuerlinckx, 2007, 2008) and fast-DM (Voss & Voss, 2007, 

2008). Vandekerckhove, Tuerlinckx, and Lee (2008) also offered a hierarchical diffusion 

model (HDM), and included code which used Markov Chain Monte Carlo Bayesian 
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sampling methods for estimation of diffusion model parameters. DMAT is a toolbox 

within Matlab, fast-DM is a set of platform-independent C code, and HDM uses 

WinBUGS. The three methods for parameter estimation differ in their implementation, 

but their aim is shared – to help make the fitting of choice RT models more accessible to 

those without firm grounding in choice RT modelling, a group which have historically 

avoided such techniques because of their prohibitive difficulty.

Chapter Two of this thesis contains software similar to the aforementioned 

packages for the diffusion model, but using Brown and Heathcote's (2008) LBA model 

(Donkin, Averell, Brown & Heathcote, 2009). The LBA is similar to the EZ-diffusion 

model in that makes relatively few assumptions regarding how evidence accumulates – 

that it is linear and independent between accumulators with only two sources of 

between-trial variability. Unlike the EZ-diffusion model, however, the LBA accounts for 

the full range of benchmark choice RT data. The simplification of the model also leads 

to analytic solutions for the likelihood of the time taken for the first accumulator to 

reach threshold. Having a full model of choice RT whose likelihood can be expressed in 

closed form - including all forms of assumed between-trial variability - is essentially 

unique to the LBA model, and makes the model relatively simple to apply to data. For 

example, in Chapter Two there are methods for applying the LBA to data using a 

Microsoft Excel spreadsheet. 

Application of Choice Response Time Models

Cognitive Psychometrics

The increasing availability of methods for fitting choice RT models means that 

cognitive psychometric applications have also become increasingly popular. This is 

particularly evident when we look at the range of experimental paradigms to which 
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cognitive psychometrics with choice RT models have been applied. For example, 

conclusions using choice RT models have been drawn in simple discrimination tasks 

(Usher & McClelland, 2001; Ratcliff, 2002), lexical decision tasks (Grasman, 

Wagenmakers, & van der Maas, 2009; Ratcliff, Gomez, & McKoon, 2004; 

Wagenmakers, Ratcliff, et al., 2008), recognition memory (Ratcliff, 1978), the implicit 

association test (Klauer, Voss, Schmitz, & Teige-Mocigemba, 2007), the accessory 

stimulus effect (Jepma, Wagenmakers, Band, & Nieuwenhuis, 2009), and the effects of 

practice (Dutilh, Wagenmakers, Vandekerckhove, & Tuerlinckx, 2009).

The approach of using the parameters of choice RT models to describe 

differences between experimental conditions has also been extended to make 

comparisons between different groups performing the same task. For example, to 

investigate the effects of aging (Ratcliff, Thapar, & McKoon, 2003, 2004, 2007; 

Ratcliff, Thapar, Gomez, & McKoon, 2004), the effects of depression and anxiety 

(White, Ratcliff, Vasey, & McKoon, 2009, in press), the differences between normal and 

impaired readers (Ratcliff, Perea, Colangelo, & Buchanan, 2004), and the effects of IQ 

on performance (Ratcliff, Schmiedek, & McKoon, 2008). 

Ratcliff et al.’s (2004) application of the diffusion model to the lexical decision 

task is a particularly interesting example of how the application of a choice RT model 

can reveal information about processes underlying a particular paradigm. It is also 

relevant to this thesis because Chapter 3 contains a re-analysis of some of the data from 

Ratcliff et al.. In the lexical decision task a participant is presented with a string of 

letters and asked to respond with whether the string forms a “word” or a “non-word”. A 

diffusion model explanation of how the lexical decision task is performed is as follows: 

Suppose a participant is presented with CHAIR as a stimulus. The participant perceives 
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and encodes the stimulus, then searches their lexicon for the stimulus. These processes 

are assumed to make up the pre-decision component of non-decision time (with button 

press making up the majority of post-decision Ter). Evidence coming from the lexicon as 

to whether or not the stimulus is a word is then accumulated until there is enough 

evidence for either a “word” or “non-word” response. In the current example, since 

CHAIR is a frequently used word, we expect that evidence will race quickly towards the 

“word” response threshold. If the stimulus presented were CHEIR, however, then we 

would expect that evidence will on average head towards the “non-word” response 

threshold. 

Ratcliff, Gomez, and McKoon (2004), across nine experiments, manipulated the 

frequency of use of the word (across high, low and very low frequencies) as well as 

whether the stimulus presented was a word or a non-word. Consistent with the usual 

findings, high frequency words were identified faster and more accurately than low and 

very low frequency words. This difference is generally taken to indicate that lower 

frequency words are more difficult, and hence take longer, to find in a person’s lexicon. 

Based on Ratcliff et al.'s use of the diffusion model, however, it was concluded that 

changes in word frequency could be entirely attributed to changes in drift rate, and not 

other parameters such as Ter. A larger drift rate for words of higher frequency suggests 

that when the word was of higher frequency, the lexicon produced more evidence to 

indicate that the stimulus was a word than when a lower frequency stimulus was 

presented. This finding led Ratcliff, Gomez, and McKoon (2004) to conclude that the 

word frequency effect is not due to differences in time taken to retrieve words from the 

lexicon, as this would have meant that Ter would be affected by frequency, but instead on 

the basis of how like a word the stimulus is. In particular, they concluded that lower 
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frequency words provide less evidence that they are words and hence have lower 

“wordness” values. 

Fitting a choice RT model requires that several assumptions be made. Section 

Two of this thesis deals with the effects these assumptions can have on the conclusions 

drawn from choice RT models. In Chapter Three – Donkin, Heathcote, Brown, and 

Andrews (2009) question the assumption that drift rate is the only parameter of the 

diffusion model which changes across word frequency conditions. We conclude that a 

different assumption is more appropriate – that non-decision time also varies across 

word frequency conditions. This alternative assumption leads to a very different 

interpretation of the effects of a word frequency manipulation in the lexical decision 

task. In Chapter Four – Donkin, Brown and Heathcote (2009) show that an assumption 

which tends to be given little consideration when fitting choice RT models can have 

relatively large implications for both the predictions and the conclusions that the models 

provide.

Other Applications

Choice RT models have a number of applications other than just in cognitive 

psychometrics. For example, in the last couple of years choice RT models have been 

used to help identify signals in imaging studies (e.g. Forstmann et al., 2008; Ho, Brown, 

& Serences, 2009). Choice RT models have also been implemented in larger theories as 

a model of the decision process. For example, Smith and Ratcliff (2009) proposed the 

visual short-term memory (VSTM) model of cued signal detection. The VSTM theory 

accounts for the effects of cueing, masking and uncertainty on accuracy and RT 

distributions using a set of non-linear inputs fed dynamically into a diffusion model 

(Wiener and OU) decision model. In other words, the choice RT model - in this case, the 
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diffusion model - acts as a model of how decisions are made based on a stream of 

evidence which comes directly from the VSTM system. 

In Chapter Five of this thesis Brown, Marley, Donkin, and Heathcote (2008) use 

a choice RT model as the decision stage in a complete theory of absolute identification. 

In absolute identification participants are tasked with deciding which particular 

stimulus, from a set of N stimuli that vary on only one dimension, has been presented on 

any one trial. Brown et al (2008) provide the Selective Attention Mapping Ballistic 

Accumulator (SAMBA) model as a complete account of both choices and RTs in 

absolute identification. Like the VSTM, SAMBA contains a detailed theory of how the 

evidence for all N responses are produced. These evidence values are fed into a choice 

RT model which makes a decision regarding which stimulus has been presented. In 

Chapter Six we test a prediction which arises as a result of the architecture of SAMBA. 

In particular, the spacing of stimuli in SAMBA has a large effect on RT but very little 

effect on accuracy. Empirical results from Lacouture (1997) support this prediction, and 

the model accounts for data across several experiments not with free parameters, but as 

a natural consequence of its framework. 

Overview and Discussion of Main Body

The main body of the thesis is a collection of six papers which together seek to 

impress upon the reader the importance, availability and potential benefits gained from 

a quantitative, model-based approach to the combined analysis of accuracy and RT data 

(see Table 1 for a full list of the papers). There are three sections: the first (Chapters 1 

and 2) offers techniques for the collection and quantitative modelling of choice RT data. 

The second section (Chapters 3 and 4) concerns the assumptions made when using 

models of choice RT. Finally, the third section (Chapters 5 and 6) demonstrates the use 

24



of a choice RT model in a complete theory of absolute identification, and solidifies the 

theme of the thesis with a demonstration of the importance of a combined quantitative 

approach to accuracy and RT data within the absolute identification paradigm. Note that 

because the thesis is a collection of published papers, there is a reference section after 

each chapter (including this introduction).

Section One: Methods and Quantitative Techniques

The aim of the first section of the thesis is to offer computer-based methods for 

collecting and analysing choice RT data. The section is broken into two papers, Chapter 

One – Donkin et al. (2009a) “ChoiceKey: A real-time speech recognition program for 

psychology experiments with a small response set”, provides a method for collecting 

choice and RT data for psychology experiments involving rapid choices. Voice key 

software has traditionally been used in experiments where the population of participants 

are unable to use a vocal mode of response over the more standard button press, or in 

cases where vocal responses are preferred. The use of a voice key, however, requires 

that the choice made is either ignored, or that responses are manually coded by an 

experimenter. ChoiceKey removes this extra labour by recording the RT while 

simultaneously recognising the response made from a pre-defined set of possible 

responses. Simply put, ChoiceKey collects accuracy and RT data from verbal responses.

 Chapter Two – Donkin, Averell et al. (2009) “Getting more from accuracy and 

response time data: Methods for fitting the Linear Ballistic Accumulator model”, offers 

methods for analysing choice and RT data which go beyond standard approaches such 

as an Analysis of Variance on mean RT or the proportion of correct responses. Choice 

RT models such as the LBA (Brown & Heathcote, 2008), when applied to accuracy and 

RT data, give a numerical summary of the latent variables underlying simple decisions. 

25



For example, the application of a choice RT model can give information about how 

much information a participant is extracting from the environment, how cautious a 

participant is in their responding, as well as the time taken for the non-decision aspects 

of RT (e.g how long it takes to execute the motor-response). Additionally, since the 

estimation of these latent variables is based on both the choice made as well as the time 

taken to make that choice, it is not affected by the potential trade-off between the speed 

and accuracy of a response. This second chapter offers methods for applying the LBA to 

choice and RT data using a range of techniques (including Microsoft Excel, the 

statistical language R, and the Bayesian sampling software WinBUGS).

Table 1 Publications making up my thesis, including corresponding chapter and section 
references.

Section Chapter Reference

1 1 Donkin, C., Brown, S., & Heathcote, A. (2009). ChoiceKey: A real time 

speech recognition program for psychology experiments with a small 

response set. Behavior Research Methods, 41, 154-162.

2 Donkin, C., Averell, L., Brown, S., & Heathcote, A. (2009). Getting

more from accuracy and response time data: Methods for fitting the

Linear Ballistic Accumulator. Behavior Research Methods, 41, 1095- 1110.

2 3 Donkin, C., Heathcote, A., Brown, S., & Andrews, S. (2009). Nondecision 

time effects in the lexical decision task. In N. A. Taatgen & H. van Rijn 

(Eds.), Proceedings of the 31st annual conference of the cognitive science 

society. Austin, TX: Cognitive Science Society.

4 Donkin, C., Brown, S., & Heathcote, A. (2009b). The over-constraint of 

response time models: Rethinking the scaling problem. Psychonomic 

Bulletin & Review, 16, 11291135.

3 5 Brown, S., Marley, A. A. J., Donkin, C., & Heathcote, A. (2008). An

integrated model of choices and response times in absolute identification. 

Psychological Review, 115, 396425.

6 Donkin, C., Brown, S., Heathcote, A., & Marley, A. A. J. (2009).

Dissociating speed and accuracy in absolute identification: The effect of 
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unequal stimulus spacing. Psychological Research, 73, 308316.

Section Two: Applications and Assumptions

Many assumptions are made in any application of a choice RT model to 

accuracy and RT data. Each of these assumptions requires a considered decision on the 

part of the researcher. This is especially important as the use of choice RT models to 

analyse data continues to expand. Section Two contains two papers which deal with 

assumptions about the way that experimental manipulations can influence the 

parameters of choice RT models. 

In particular, Chapter Three – Donkin, Heathcote, et al. (2009) “Non-decision 

time effects in the lexical decision task” is an example of how changes in these 

assumptions can have large ramifications for the paradigm under investigation. The 

paper involves a re-analysis of lexical decision task data from Ratcliff, Gomez, and 

McKoon (2004), highlighting a systematic problem with the diffusion model’s account 

of the word frequency effect. This misfit is corrected by adding the additional 

assumption that the time taken to retrieve a word from the lexicon is affected by that 

word’s frequency. Such inference about the processes underlying the lexical decision 

task would not have been possible without a combined, quantitative analysis of 

accuracy and RT data. 

In Chapter Four – Donkin et al. (2009b) “The over-constraint of response time 

models: Rethinking the scaling problem” my co-authors and I suggest that one 

particular assumption about how manipulations can influence parameters has been 

largely overlooked. The chapter shows that this assumption is not benign and like other 

assumptions it causes changes in the predictions and psychological interpretations of the 
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model. The paper encourages the need for the appropriate and considered use of choice 

RT models as a tool for extracting information from RT and accuracy data.

Section Three: A Psychological Process Model – Absolute Identification

The third section of the thesis is concerned with the importance of both RT and 

accuracy in fully understanding a particular paradigm called absolute identification. 

Absolute identification is particularly relevant to the overarching aim of the thesis since 

historically, very little attention has been paid to RT phenomena: few RT data exist, and 

prior to Brown, Marley, et al. (2008) a complete theoretical account of both accuracy 

and RT phenomena was missing. It was common opinion amongst absolute 

identification researchers that RT phenomena were relatively uninteresting as they 

simply mirrored accuracy phenomena – accurate responses were fast and inaccurate 

responses were slow, so it was sufficient to consider just response accuracy, trusting that 

RT would take care of itself. The two papers making up this final section of the thesis 

are extensions of the more general quantitative approach to accuracy and RT contained 

in the previous two sections. 

In Chapter Five – Brown, Marley, et al. (2008) “An Integrated Model of Choices 

and Response Times in Absolute Identification” a choice RT model is used as the 

decision stage in a process model of the absolute identification task. Much of the 

SAMBA model of absolute identification presented in Brown et al. (2008) is concerned 

with the development of the inputs to this decision process. The use of the Ballistic 

Accumulator (Brown & Heathcote, 2005) as a model of how decisions are made in 

absolute identification tasks allows SAMBA to account for the wide range of 

benchmark phenomena observed in both accuracy and RT. The paper presented in 

Chapter Five gives a detailed overview of the SAMBA model and demonstrates its 
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account of benchmark accuracy and RT data.

In Chapter Six – Donkin, Brown, et al. (2009) “Dissociating speed and accuracy 

in absolute identification: The effect of unequal stimulus spacing”, my co-authors and I 

test a prediction from SAMBA – that there is a dissociation between accuracy and RT 

when the spacing between stimuli is varied. Donkin, Brown, et al. (2009) present data 

from an experiment in Lacouture (1997) in which increasing the spacing between 

stimuli caused an increase in accuracy without a corresponding decrease in RT, 

confirming SAMBA’s prediction. This paper highlights the importance of consideration 

of both RT and accuracy in absolute identification, since they are not a simple 

transformation of each other. It also presents a strong challenge to any alternate 

theoretical account of the task, especially since SAMBA accounts for the dissociation as 

a natural result of its architecture and not via free parameters. The prediction is yet 

another example, and hopefully cements in the reader's mind, the importance of first 

considering, and then quantitatively modelling, both accuracy and choice RT data. 
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Abstract

Psychological experiments often collect choice responses using button presses. 

However, spoken responses are useful in many cases, for example: when working with 

special clinical populations, or when a paradigm demands vocalization, or when 

accurate response time measurements are desired. In these cases, spoken responses are 

typically collected using a voice key, which usually involves manual coding by 

experimenters in a tedious and error-prone manner. We describe an open source speech 

recognition package for MATLAB, ChoiceKey, which can be optimized by training for 

small response sets and different speakers. We show ChoiceKey to be reliable with 

minimal training for most participants in experiments with two different responses. 

Problems presented by individual differences, and occasional atypical responses, are 

examined, and extensions to larger response sets are explored.    
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Many psychology experiments require participants to complete hundreds of 

trials using a small response set. For example, memory experiments often require 

participants to respond with only ‘old’ or ‘new’ (e.g., Rubin, Hinton & Wenzel, 1999) 

and choice response time (RT) tasks often require participant to respond make one of 

two responses, such as ‘one’ and ‘two’ or ‘high’ and ‘low’ (e.g., Ratcliff & Rouder, 

1998). The typical method for collecting responses for this type of experiment is a 

button press, usually via a keyboard, mouse, specially developed button-box, or a touch 

screen. However, there are a number of reasons that an experimenter might instead 

prefer to collect spoken responses. For these cases we offer an open source speech 

recognition package, ChoiceKey. In the following we show that ChoiceKey reliability 

identifies a small number of response alternatives, and that it gives precise estimates of 

vocal RT, but first we discuss a few of the circumstances in which one might prefer 

vocal responses over alternative data collection methods.

Response time measurement is an important aspect of many psychology 

experiments, and the precision and accuracy of RT estimates from different response 

tools has been documented extensively in this journal. Keyboard responses are often 

imprecise due to buffering issues (Plant, Hammond & Turner, 2004; Shimizu, 2002; 

Voss, Leonhart & Stahl, 2007), as are mouse-button clicks (Beringer, 1992; Crosbie, 

1990; Plant, Hammond & Whitehouse, 2003).  Precise RT measurements can be 

obtained using button-boxes connected via the PC parallel port (e.g., Stewart, 2006; 

Voss et al.), but these solutions require specialised hardware, which can be expensive 

and is not always well supported. We show that ChoiceKey also yields precise 

measurements of RT, with the advantages that it is simple to set up and inexpensive, as 

it requires only a microphone and a sound card, which are now standard equipment for 
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most PCs.

Aside from RT measurements, making responses via buttons can be problematic 

because it requires the participant to learn a response-to-button mapping. Although 

some of these mappings are relatively natural, such as ‘left’ and ‘right’ using the left and 

right arrows of the keyboard, other response sets have no intuitive button mapping. For 

example, Rubin et al. (2004) mapped the responses ‘old’ and ‘new’ to keys chosen by 

the experimenters, and participants had to learn this mapping and maintain it throughout 

the experiment. If participants were able to speak aloud the responses ‘old’ or ‘new’, the 

learning of this mapping could be avoided. 

Experimental research with clinical populations who are unable to give manual 

responses via a button press might also benefit from the ability to easily collect spoken 

responses and the associated RTs. In particular, an automatic speech recognition 

program might benefit experimenters working with people with schizophrenia, people 

with intellectual disabilities, or people with psychomotor disabilities. Trewin and Pain 

(1999) have shown that people with these types of psychological and/or motor 

disabilities display a large number and wide range of errors when using a mouse or 

keyboard. The use of spoken responses may help avoid some of these measurement 

errors. 

Even if participants are able to give manual responses, Vidulich and Wickens 

(1985) show that when central processing is required for a task that is verbally oriented 

spoken responses are most appropriate. It is also possible that the need for spoken 

responses is implicit given the experimental procedure or paradigm being used, such as 

in Stroop-like tasks that investigate the cause of interference due to response modality 

(Simon & Sudalaimuthu, 1979; Wang & Proctor, 1996). In these situations ChoiceKey 
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offers a way of both identifying response and recording RT.

Amongst others, Lacouture and Marley (2004) allowed participants to respond 

vocally in an absolute identification experiment. Participants gave spoken responses via 

microphone and reaction times were obtained using a “voice key”, which is a device 

that measures RT by measuring the time sound energy crosses a threshold. However, a 

voice key requires response choices to be manually coded by an experimenter, a task 

which is inevitably time consuming, tedious, and error-prone. Speech recognition 

software can help alleviate these problems.

 Speech recognition software is in common use; most people have had the 

experience of ordering a pizza, or giving personal details, by speaking into a phone. 

However, the accuracy of these systems can be far from perfect, and is unlikely to be 

acceptable for experimental measurement. Microsoft Windows and Macintosh OS X 

both come with inbuilt speech recognition functionality that can be adapted by training 

to individual users’ voices. However, we found these inbuilt speech recognition 

packages to be far too inaccurate for use in experiments, even under ideal conditions 

with only two different responses and extensive training. This is likely because the 

programs are intended to recognise a very large number of different responses in 

environments where the cost of an incorrect recognition event is low. 

As an alternative, we offer an exemplar-based speech recognition program that 

is trained exclusively to recognise only those responses that are to be used in an 

experiment. The program, ChoiceKey, is an open source library for the software 

package MATLAB that can be called by a MATLAB script that controls the experiment. 

Appendix A outlines an example script for a simple experiment where one of two 

stimuli is presented, and the participant is required to name it. ChoiceKey was 
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developed using the Data Collection and Voicebox toolboxes under MATLAB v7.5.0 

(R2007b) and Reynolds, Quatieri and Dunn’s (2000) Gaussian mixture models for 

speaker identification. Details about the contents of the ChoiceKey library are outlined 

in Appendix B. 

The underlying structure of ChoiceKey is based on leading models of speaker 

verification. Bimbot, Bonastre, Fredouille, Gravier, Magrin-Chagnolleau, et al. (2004) 

offer a detailed and complete discussion of the extensive work in this area. A graphical 

summary of how ChoiceKey works is presented in Figure 1. Sound card outputs are 

captured using the inbuilt MATLAB Data Collection Toolbox. Audio capture begins 

when input from a microphone reaches a threshold, and terminates one and a half 

seconds later. Both the threshold and recording time can be altered by the user. The 

recorded data are first passed through front-end processing, transforming the time-

varying amplitude input from the microphone into a set of features represented as a 

vector of “cepstral” coefficients. These feature vectors are then modelled statistically to 

create a set of training exemplar models.  Later, during the experiment, participants’ 

responses are turned into feature vectors and the likelihood that these vectors came from 

each training exemplar model is calculated. The most likely model is the chosen 

response. We now discuss each of these aspects in more detail.
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Figure 1 Graphical representation of ChoiceKey’s operation. During training, the 
response “old” is given on a particular trial. Features are extracted and a statistical 
model is created for that training exemplar. The model is then stored with the rest of the 
models created in training. During testing, the participant speaks the word “old” during 
one of the trials of the experiment. The features of the word are extracted and then 
compared against all the models created at training. The most likely model is chosen, 
which happens to be one of the trained exemplars for the response “old”, so ChoiceKey 
chooses that response.

Front-end Processing

In the front-end processing stage, the sound input is broken up into 20ms 

windows using a 10ms frame-rate, ensuring 50% overlap between segments. Only those 

windows containing enough sound energy to be considered not silent are kept. This is 

done relative to the noise in the signal so as to lower the probability that speech is 

discarded. The Mel-scale cepstral feature vectors are then calculated for each of the 

20ms windows. This is done by first taking the fast Fourier transform of the speech 

segment. The resulting spectrum is smoothed using a series of band-pass frequency 

filters which are convolved with the spectrum to get an average value for each 
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frequency band. These filters are spaced on the Mel scale, which has the property of 

being close to the frequency scale of the human ear (Stevens, Volkman & Newman, 

1937). A discrete cosine transformation is applied to the log of the values produced by 

the frequency filters to yield cepstral coefficients. 

Reynolds, Quatieri and Dunn (2000) suggest that all but the 0th cepstral 

coefficient are best used in speaker recognition. However, for ChoiceKey we desire 

speech, not speaker, recognition, and we have achieved greater accuracy by retaining 

the 0th coefficient. Reynolds et al. also suggest a number of normalisation 

transformations be made to compensate for mismatched microphone conditions between 

training and testing. We did not use these transformations as we assumed that, because 

training ChoiceKey typically takes less than five minutes, training and testing would be 

done under identical conditions. 

Statistical Modelling

The cepstral coefficients are modelled using Gaussian mixture models (GMM), 

which have been shown to be successful in the domain of speaker recognition 

(Reynolds, 1992). GMMs have the desirable properties of being able to capture the 

behaviour of a distribution without assuming a very specific (e.g., Gaussian) form. They 

are also computationally simple, facilitating real-time processing. A GMM’s density is 

the weighted linear combination of M Gaussian densities, each parameterized by a mean 

and variance term for each cepstral coefficient vector. The number of Gaussian densities 

used, M, can be altered by the user. During development we found that five Gaussian 

densities gave the best overall performance. However, individual differences in the 

optimal value of M did exist, so improved individual accuracy may be obtained by 

setting M based on an individual’s data. 
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The Decision

During ChoiceKey training, the participant will speak aloud each of k response 

words N times. Each of these training words is modelled using a GMM, giving N 

exemplar models for each of the k responses at the end of training. On any particular 

trial of the experiment proper, the participant will make a new and unknown response. 

The Mel-scale cepstral feature vectors are calculated for this new response. ChoiceKey 

then calculates the log-likelihood of observing the cepstral feature vectors given the 

parameters of the GMM for each of the N exemplars and k responses. The exemplar 

with the largest log-likelihood is selected as the given response. 

During development we tried a range of alternative response selection rules, 

such as selecting the response set with the largest summed log-likelihood across all 

exemplars, and more sophisticated classifiers, such as backpropogation neural networks 

and support vector machines. For the small response-set sizes in our experiments the 

more sophisticated selection rules did not provide any benefit, but this may not be the 

case for larger response-set sizes. The simple selection rule used by ChoiceKey has the 

advantage of reduced computational cost, particularly during training. In other settings, 

ChoiceKey can be easily adapted by the user to implement alternative training and 

decision algorithms. 

Using ChoiceKey

A typical experiment using ChoiceKey involves a short training session (less 

than five minutes), where participants speak aloud the words in the response set (e.g. 

old/new) a number of times (typically between 10 and 30), training ChoiceKey to 

identify their voice. The experiment then proceeds as normal, with responses made by 

voice, using ChoiceKey to return the response that it calculates to be the one most likely 
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spoken by the participant, and the response time (RT). We now report the results of 

experiments examining the accuracy of these measurements. The first experiment 

investigates the accuracy of the RT measured by ChoiceKey, by comparing it with 

reaction times manually measured from audio waveforms recorded in real time. In the 

second experiment we investigate how accurately ChoiceKey identifies responses from 

a variety of response sets. 

Experiments

Response Time

An AMD computer with an AthlonXP 64-bit 2.33 Ghz processor and 2Gb of 

RAM, running Windows XP SP2 with a SoundBlaster Live! v5.10 sound card was set 

up to play a loud tone through external speakers. After the tone played, data capture 

within ChoiceKey was initialised. After an interval the word ‘respond’ appeared on 

screen and the participant spoke aloud the number ‘one’ into a headset-mounted SONY 

DR-220 microphone. The speaking of the word ‘one’ was intended to trigger recording, 

and for all 200 trials the triggering worked as required. The intervals between the tone 

and response were varied from 250 to 2000ms in intervals of 250ms, with each interval 

occurring 25 times, yielding 200 response times that spanned the range of RTs usually 

observed in simple psychological tasks. 

Throughout the course of the experiment, a second laptop was set up nearby 

with its external microphone making a real-time recording of the entire proceedings 

under Adobe CS3 Soundbooth. This recording was later opened in Soundbooth as a 

waveform and the time between the tone and the “one” response was determined 

manually. This process gave us an accurate estimate of response time that should 
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correlate highly with ChoiceKey’s RT measurement.  

Figure 2 RT as recorded by ChoiceKey (y-axis) as a function of RT calculated manually 
from sound waveforms (x-axis). The solid diagonal line represents perfect measurement 
of RT. ChoiceKey gives a precise, but slightly biased estimate of RT. 

Figure 2 shows the response times recorded by ChoiceKey plotted against 

response times derived from the waveform. The two measures of response time were 

highly correlated (r=.999). Response times from ChoiceKey were used as the response 

variable in a linear regression, with true response time used as the predictor variable. 

The slope of the regression line was 0.999, t(199) = 344.83, p < .001, and the intercept 

was 90ms t(199) = 18.875, p < .001, suggesting that ChoiceKey gives a precise, but 

slightly biased estimate of response time. 

Rastle and Davis (2002) discuss biases in voice-key RT measurement as a 

function of the onset characteristics of different response waveforms. If experimenters 
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are concerned about obtaining absolutely unbiased measurements of RT, the above 

procedure can be carried out for all responses separately. More likely to be of concern to 

users of ChoiceKey, however, are differences between biases in RT measurement for 

different responses. Unless this issue is addressed, differences in RT may be attributed 

to differences between stimuli, when the real cause is differences in the time taken for 

ChoiceKey to trigger the onset of recording. 

To address this issue without the time and effort required by manual scoring of 

waveforms, ChoiceKey includes a function called callib.m. On each trial, this function 

presents participants with a “+” sign and ask them to make one response repeatedly for 

a block of trials of length determined by the experimenter. The process is then repeated 

for each response. The function returns the mean RT for each response. Any differences 

in RT due to onset biases for the different responses can then be identified and 

corrected.  

Identification

Identification accuracy was investigated using data from 24 participants who 

read aloud the following three sets: {1,2,3,4}, {old,new} and {high,low}. Participants 

were 12 male and 12 female first year psychology students. Words in each set were 

spoken 50 times in a random order and the order of each set was counterbalanced across 

subjects. Responses were collected using the same hardware used in the previous 

experiment. As envisaged for a standard experiment, the first 10 responses spoken by 

participants were used to train ChoiceKey. The remaining 40 responses were used to test 

ChoiceKey’s identification accuracy. Results from the response set consisting of 

numbers one to four were partitioned into six different response sets of size two. These 

sets, along with {old,new} and {high,low} were used to test ChoiceKey’s two-choice 
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identification accuracy. Table 1 shows the distributions of the number of errors out of 

the 80 identifications made by ChoiceKey.

Table 1 The number of errors (out of 80 identifications) made by ChoiceKey for 
individual participants for each response set. For example, the first cell indicates that for 
16 out of 24 participants there were zero errors in identification for the word set 
{old,new}. The mean proportion of correct identifications for each response set is 
reported in the rightmost column. 

                                                     Number of errors (out of 80 identifications)

Response 
Set

0 1 2 3 >3 Mean 
Proportion 

Correct 
old,new 16 3 3 2 0 .99

2,4 15 5 1 1 2 .98
1,2 14 5 0 3 2 .96
1,3 11 6 1 4 2 .97
3,4 12 4 4 3 1 .98
1,4 9 2 2 9 2 .95

high,low 6 4 5 8 1 .96
2,3 6 2 4 7 5 .92

Very few identification errors were observed for the majority of participants and 

responses. For most response sets ChoiceKey made zero or one error out of 80 for 

almost all participants. For the response set {old,new}, ChoiceKey made no errors in 

identifying responses for 16 out of 24 participants. The response sets {2,4} and {1,2} 

were also identified with very few errors, with either zero or one error being made for 

20 and 19 participants, respectively. The average accuracy of ChoiceKey’s identification 

was highest for the response sets {old,new}, followed closely by {2,4} and {3,4}. 

Individual differences in identification far outweighed any differences observed as a 

function of age or gender. 

The results of Table 1 indicate that with only 10 training exemplars ChoiceKey 

is able to perform well for some response sets, but that others are less discriminable. For 

example, in the response sets {high,low} and {2,3}, ChoiceKey was able to identify all 
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responses correctly for only a quarter of the participants. Not only were some response 

sets less discriminable, but even for the responses sets in which ChoiceKey was almost 

perfectly accurate for the majority of participants, a small proportion of participants 

remained whose responses were difficult to discriminate. For example, the response set 

{1,2} leads to either one or no errors for 19 out of 24 participants, suggesting it as a 

good candidate for use with ChoiceKey. However, for one participant 35 responses out 

of 80 were identified incorrectly. This suggests that with minimal training ChoiceKey is 

not viable for some participants. 

One approach to solving this problem is to first screen participants based on a 

pre-experimental test of ChoiceKey’s accuracy. The function traintest provides an 

estimate of ChoiceKey’s identification accuracy. Interestingly, for the participant with 

very low accuracy for the response set {1,2} all other combinations of number 

responses accuracy were also low. However, no errors in identification were observed 

for the response set {high/low} for this participant, suggesting that speaker 

identification accuracy varies substantially as a function of response set. 

An alternative approach to dealing with low identification accuracy, either for 

particular participants or particular response sets, is to use more than the ten training 

exemplars. To evaluate this strategy, 12 of the 24 participants completed an extra 50 

responses for the word sets {old,new} and {high,low}. These extra responses were used 

to test the effect of varying the number of responses per word used in training 

ChoiceKey. The number of training exemplars used was varied from 1 to 30, always 

with the last 70 exemplars used to test ChoiceKey’s accuracy. 
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Figure 3. ChoiceKey identification accuracy averaged over participants and plotted as a 
function of number exemplars used in training. Accuracy was high for the response set 
{old,new} even when few training exemplars were used, but more exemplars were 
required for acceptable performance with the {high,low} response set.

Figure 3 shows the average percentage of accurate identifications made by 

ChoiceKey as a function of the number of training exemplars. For the response set 

{old,new}, increasing the number of training exemplars beyond 10 did not increase 

accuracy. This is likely due to a ceiling effect, as discrimination between the words was 

already close to perfect with 10 training exemplars. For the response set {high,low}, 

improvement was less rapid, but the same accuracy as for {old,new} was achieved with 

a set of 30 exemplars, suggesting that even difficult-to-discriminate word sets can be 

used with ChoiceKey, as long as sufficient training is provided. 
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Figure 4. ChoiceKey recognition accuracy for individual participants for the response 
set {high/low} when 10 and 30 exemplars were used in training (left panel), and when 
the response sets {1,2,3} or {1,2,3,4} were used with 10 training exemplars. 
Participants are ordered according to accuracy in the 10 exemplar and {1,2,3} cases for 
left and right panels, respectively.

Increasing the number of training exemplars improved accuracy for all 

participants, even those who had very low accuracy with fewer training exemplars. The 

left panel of Figure 4 compares individual participant accuracy for the response set 

{high,low} with 10 and 30 training exemplars. Participants are ordered along the x-axis 

by accuracy for the 10 training exemplar case, and the same order is used for the 30 

exemplar case to highlight individual improvement. For 23 out of 24 participants, 

accuracy either increased or remained perfect with the increase in training set size. 

Participants whose accuracies were lowest with 10 training exemplars showed the 

largest increase, bringing performance for almost all participants up to acceptable 

levels. 

With only ten training exemplars, accuracy was much worse for responses sets 

of more than two words. The right panel of Figure 4 shows accuracy for individual 
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participants for the response sets {1,2,3} and {1,2,3,4} when ChoiceKey was trained 

with ten exemplars. Participants are ordered by accuracy for the smaller response set on 

the x-axis. Average accuracy was roughly equivalent for both response sets, although 

some participants were noticeably less accurate for the larger response set. Only a 

quarter of participants were more than 95% accurate, suggesting that a larger training 

set is required for the remaining participants. 

These results suggest that experimenters who wish to use ChoiceKey for 

response sets larger than two should use the traintest function to screen participants and/

or calibrate training set size to achieve the desired level of accuracy. The latter strategy 

should be used with caution, however, as we did not test whether larger set sizes display 

the same improvement in accuracy with training set size as we found with set size two. 

A second limitation related to the use of larger set sizes is the associated 

computational cost, which increases as a polynomial function of both the response set 

size and the number of training exemplars. Sufficient time must be available between 

collecting the training data and commencing the experiment to process the training data. 

For example, when response set size was increased from two to four, the time taken to 

identify a single response, given 10 training exemplars, increased from 50 to 100 

milliseconds. When 40 training exemplars were used, however, identifying a single 

response took 100 and 300 milliseconds for two and four responses, respectively.     

Discussion

ChoiceKey is a measurement tool for the MATLAB environment that allows the 

collection of vocal choice responses. It is designed for use in experiments with a small 

number of possible responses. ChoiceKey provides precise estimates of vocal onset 

time, and can be easily calibrated to eliminate onset differences between responses 
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(Rastle & Davis, 2002). For a variety of common response pairs, it can reliably identify 

most participants’ responses with high accuracy after only minimal training, such as 10 

training exemplars per response, which takes only around two minutes for a binary 

choice task. 

However, we found that some response pairs are identified with lower accuracy 

than others (e.g., {high, low}). Although experimenters could simply use response pairs 

which are reliably identified with high accuracy (e.g., {old,new}), doing so removes the 

potential benefit of reduced response learning offered by spoken responses. An 

alternative strategy is to use a larger training set, which improves accuracy. For 

example, with 30 exemplars accuracy was equally good for {old,new} and {high,low}. 

A second issue is that identification accuracy is low for some participants, 

suggesting that there may be a need for pre-test screening of ChoiceKey’s accuracy for 

each participant. This problem could be addressed through the use of more training 

exemplars, at least for the participants in our experiment. Increasing the number of 

responses used to train ChoiceKey from 10 to 30 not only increased identification 

accuracy for one of the response sets with the poorest performance, {high,low}, it also 

improved identification accuracy for those participants whose responses were most 

poorly identified when only 10 training exemplars were used. 

Even after extended training, ChoiceKey did not perfectly identify all responses 

from all participants. These errors appeared to be asymptotic (i.e., they did not 

disappear with increased training). Such asymptotic errors are likely due to atypical 

responses, background noise (in the environment or in computer hardware), or both. We 

minimized the latter source of error by using a quiet testing environment and a high 

quality sound card and microphone. However, it is likely that even when background 
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noise and hardware errors are minimized, participants will sometimes say words in a 

way that was not encountered in training, causing misidentification. Fortunately, the 

proportion of such asymptotic errors in testing was low (around 1%). 

It is arguable that this low error rate may not be too different from the rate of 

errors due to participants pressing the wrong response button, and it may even be less 

than the button-press error rate when the response mapping is unfamiliar or 

insufficiently practiced. Similarly, ChoiceKey’s low error rate may be comparable to 

errors made by the experimenter manually coding responses in real-time. Where perfect 

vocal choice identification is required we recommend that responses be recorded and 

scored off-line. Even where an error rate of 1-2% is acceptable it may be prudent to 

record some responses and perform an off-line check of ChoiceKey’s scoring as a 

quality control measure.

Apart from lowering background noise and using high quality hardware, we 

were not able to identify any other measures that reliably increased ChoiceKey’s 

accuracy. For example, we were unable to identify an obvious reason why certain word 

pairs show lower discriminability than others. We therefore advise users that they 

choose the most natural response set for the task, and if necessary, increase the number 

of training exemplars until the desired level of identification accuracy is achieved. 

Similarly, there appears to be no clear pattern to the type of voice that ChoiceKey is 

able to identify with high accuracy (e.g., male vs. female voices). We suggest the same 

course of action – pick the most natural methodology and if pre-test screening shows a 

high error rate with any individual participant either use more training exemplars or 

exclude that participant’s results from analysis.

Vocal responses are particularly advantageous with larger response sets, where 
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button responding is naturally more error prone due to the greater difficulty of learning 

a larger response mapping. Large response sets are also more likely to introduce 

differences in RT due to differences in response production time (e.g., differences 

between fingers). When more than 10 responses are required a unique finger cannot be 

assigned to each response, requiring either finger combinations, further increasing 

learning difficulty, or a movement response (e.g., moving a finger or mouse cursor from 

a “home” button to a response button). In both cases, RT variability and the potential for 

differences in production time are increased. 

Unfortunately, we found that creating a speech recognition system which is 

highly accurate for large response sets is very difficult. When the response set was 

extended beyond two alternatives, we observed a large drop in accuracy, to about 90% 

on average for three or four different responses. We also found large individual 

differences, and that a majority of participants had low accuracy when ChoiceKey was 

trained with only 10 exemplars per response. These results indicate that ChoiceKey 

should be used cautiously with greater than two response alternatives, and that likely 

extended training will be required to obtain high accuracy. Fortunately, because 

ChoiceKey is open source and implemented in the flexible MATLAB language, users 

may easily explore such extensions. 

Some directions for these future extensions have already been discussed. For 

example, it may be possible to optimise certain parameters affecting identification 

accuracy individually for each participant (e.g., the number of Gaussian density 

mixtures to use in the GMM). Future improvement may also lie in an alternative form 

of statistical modelling of the features of the recorded speech segment. Our use of 

GMM as a model of these features was based on their success in the field of text-

57



independent speaker recognition. Text-independent speaker identification involves the 

recognition of a voice irrespective of the spoken utterance. Text-dependent speaker 

identification involves recognising voices based on a particular set of spoken words. 

Hidden Markov models (HMMs) are often used to model the features of the spoken 

response in text-dependent speaker identification, as they incorporate temporal 

information from the sound segment, whereas GMMs do not (Bimbot et al., 2004). It is 

possible that the lower accuracy observed for certain word pairs might be due to our use 

of time-independent modelling of spoken features. For example, the words “high” and 

“low” certainly sound dissimilar in real time, but collapsing their features to a single 

point in time, as in a GMM, may increase their similarity. Using HMMs instead of 

GMMs in ChoiceKey might lead to higher identification accuracy for word pairs whose 

features overlap significantly on a time-independent scale, or for larger sets of words.

To summarise, ChoiceKey can easily be used to collect spoken responses and 

precise response times without the need for manual coding of responses associated with 

voice keys. We have shown that with 30 training exemplars, ChoiceKey is inaccurate on 

only around 1% of trials for only around a quarter of participants. We doubt whether 

this error rate is much different from errors made using other forms of response 

collection (i.e., pressing the wrong button when using a keyboard or mouse). Some may 

worry that the time taken to train ChoiceKey using 30 exemplars might be restrictive or 

offer no benefit over the time taken for participants to learn response-button mappings; 

however, with only two responses this training would take only two minutes assuming 

two seconds per response. We also note that once trained, unlike a participant, 

ChoiceKey will not forget its training. At present, the only major downfall of 

ChoiceKey is that it is limited to highly accurate measurement when using 2 responses.
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Appendix A

Example Experiment

We provide MATLAB code for a mock experiment (example.m), where 

participants are asked to determine on each trial which of two tones differing in 

loudness is presented. The purpose of this code is not only to help the user collect 

responses using ChoiceKey, but also to show how MATLAB can be used to control a 

simple experiment. To begin the experiment, “example” (the name of the .m file) should 

be entered into the MATLAB Command Window. The experiment starts by calling of 

the train function, which allows for the recording of responses and the subsequent 

training of ChoiceKey. After the training, a test of ChoiceKey’s identification accuracy 

is performed using the traintest function. After the function reports accuracy and 

number of errors the enter key must be pressed to continue to the experiment. 

When the experiment begins, participants are prompted to press any key to 

continue. The function getkeywait has been included as it is a handy way to get 

MATLAB to wait to accept and then return keyboard responses. A fixation cross is then 

presented for 300 ms, followed by the presentation of the stimulus. In this experiment a 

tone is played; however, this can be easily adapted to any other stimuli, such as strings 

of characters, using code similar to that used to display the fixation cross. Similarly, 

images can be displayed using the imread and image functions in MATLAB. 

The function test then allows the participant to speak their response, and will 

return the response which ChoiceKey calculates to be most probable given its training, 

as well as the response time. Feedback is displayed for one second, as either the word 

“Correct” or the correct response, depending on whether the participant was correct or 
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incorrect, respectively. At the end of each block the block number, trial number, 

stimulus presented, response time and given response are all recorded to a text file. 

Participants are either given a break of fixed duration, or thanked for their participation 

if they have completed all blocks. Following is pseudocode for the example experiment:

#Train ChoiceKey using the train function

train()

#Test the trained version of ChoiceKey

traintest()

#The experiment

For (k in 1:number of trials) 

#Show the stimuli

showstimuli()

#Collect the response and use ChoiceKey to get RT and response 

test()

end
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Appendix B

The file sr.zip is available from the Psychonomic Society’s electronic archive 

www.psychonomic.org/archive. The zip file contains the functions, and their 

respective .m files, required for ChoiceKey to run. The end user will normally only be 

concerned with the following four functions:

The train function

Typically the first function employed is train. Participants are first given the 

complete response set, followed by a series of presentations of each word individually. 

During each presentation participants are asked to read aloud the presented word. These 

initial utterances form an exemplar set which ChoiceKey uses to make all future 

identifications. Only one parameter must be set for the train function, the response set: 

“words”. Optional parameters are the number of responses per word to use for training, 

“ex”, the duration of recording, “duration”, the frequency of recording, “Fs”, and 

“trigger”, the input energy required before audio capture begins. The default number of 

exemplars that ChoiceKey uses is 10. After the initial exemplars are recorded there will 

be a short pause of around 30 seconds to a minute, depending on the size of the response 

set, while ChoiceKey extracts the features and builds a Gaussian mixture model for each 

exemplar (Reynolds et al., 2000). We experimented with different numbers of features 

(Gaussians) and found 5 (the default value) to be best with our response sets.  Both a 

smaller and larger number of Gaussians decreased accuracy, and larger values increased 

computational time.  
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The traintest function

The testtrain function provides a test of ChoiceKey’s identification accuracy for 

each participant. An extra set of exemplars for each word in the response set are 

recorded and then used to provide an estimate of expected identification accuracy for 

the participant. The testtrain function requires the response set, “words”, the number of 

responses per word to use in testing, “ntest”, and the results of the training, “mu”, 

“sigma”, and “c”, to be given. The optional parameters are the same as for the train 

function as well as an additional parameter “silent”, which defaults to “F” (false). The 

traintest function returns the proportion of correctly identified responses and displays it, 

and the number of errors in identification, in the MATLAB Command Window if 

“silent” is not set to “T” (true). 

The experimenter may choose to use this feedback to decide if the expected 

identification accuracy is too low, and whether or not to use ChoiceKey with this 

participant, or possibly to use the extra responses just recorded as additional training 

exemplars. After the accuracy is displayed onscreen (if “silent” is set to “F”) the 

experimenter is asked to decide whether or not to use the additionally recorded 

responses as the exemplars in training ChoiceKey. If silent is set to “T”, the participant’s 

accuracy is written to a text document called acc.txt. If “yes” is chosen after the prompt 

then a pause will occur while ChoiceKey is trained on the new responses. 

The callib function

The callib function offers the experimenter a method for estimating the 

differences in identifying onset time for different responses. Participants are instructed 

to respond with one of the words from the response set for a block of n trials each time 

they are presented with a neutral stimulus (a “+” sign). The process is repeated for each 
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word in the response set. The function writes to a text file, callib.txt, the average RT for 

each response. The callib function requires as input the response set, “words” and the 

number of recordings per response, “nrec”. The optional parameters “duration”, “Fs” 

and “trigger”, default to 1.5 seconds, 44100Hz and 0.05, respectively.  

The test function

After ChoiceKey has been trained for a participant’s voice, the test function can 

be called whenever response collection is required. This function will record the 

participant’s response and return the most likely spoken response, given the set of 

exemplars recorded in the training stage. The time taken to make the response is also 

returned. As input, the test function needs the three parameters “mu”, “sigma”, and “c” 

returned by the train function. Optional parameters also include “duration”, if different 

from 1.5 seconds, “Fs”, if different from 44100Hz, and “trigger”, if different from 0.05. 

Once the function is called, the audio capture device is activated and waits until 

audio input reaches the “trigger” threshold, after which it records audio signal for a set 

duration. The time taken from stimulus onset to the audio signal reaching threshold is 

recorded as the response time, and returned to the user. The trigger threshold value 

default of 0.05 worked well in our testing; however, this value can be changed by the 

user. For example, if background noise is present (e.g., from a computer fan), the 

threshold may be increased to reduce the false alarm rate due to triggering by 

background noise. However, setting this value too high may result in responses being 

missed by ChoiceKey.  
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Abstract

Cognitive models of the decision process provide greater insight into response time and 

accuracy than standard Analysis of Variance techniques. However, they can be 

mathematically and computationally difficult to apply. We provide instructions and 

computer code for three methods of estimating the parameters of the Linear Ballistic 

Accumulator (LBA), a new and computationally tractable model of decisions between 

two or more choices. These methods vary in their flexibility and user accessibility, and 

include a Microsoft Excel worksheet, scripts for the statistical program R, and code for 

implementation of the LBA into the Bayesian sampling software WinBUGS. We also 

provide some scripts in R which produce a graphical summary of the data and model 

predictions. Finally, in a simulation study we explore the effect of sample size on 

parameter recovery for each of our different methods. 
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Many tasks used in experimental psychology involve participants making 

relatively simple decisions, for which the experimenter measures the time taken and the 

accuracy of their responses. In many cases the difficulty of the task is also manipulated 

within subjects. The resultant interaction between speed, accuracy and difficulty is 

complicated and presents significant challenges for standard analysis techniques even in 

the simplest case of two response alternatives. Results from an experiment conducted by 

Ratcliff and Rouder (1998) are a good demonstration of the range of effects that can 

occur, even within data from a single participant. They also demonstrate the well 

established tradeoff between decision speed and accuracy, whereby a participant can 

improve their accuracy by increasing the time taken to make a decision. The complex 

interdependence of accuracy and response time (RT) draws into question the common 

practice of analysing accuracy and RT separately – for example, using two separate 

ANOVAs. 

For more than 30 years, mathematical psychologists have been developing 

cognitive models to account for the wide range of choice RT phenomena. These models 

use a small number of decision process variables to account for both the accuracy of 

responses and the complete distribution of associated RTs. Many models exist, (e.g. 

Brown & Heathcote, 2005; 2008; Busemeyer & Townsend, 1992; Ratcliff, 1978; 

Ratcliff & Rouder, 1998; Ratcliff & Tuerlincx, 2002; Smith & Ratcliff, 2004; Van 

Zandt, Colonius & Proctor; 2000; Vickers, 1970) each differing in their assumptions 

about the exact nature of the underlying processes. However, most share the same basic 

framework. They assume that when making a decision the participant repeatedly 

samples information from the environment and this information is used as evidence for 
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one of the potential responses. Once the evidence in favour of one response reaches a 

threshold the decision process is terminated and that response is made. The time taken 

to make the response equals the time to accumulate the required amount of evidence 

plus some time taken for non-decision processes, such as perception, and the execution 

of a motor response. These cognitive models all provide estimates of three key 

parameters: the rate at which evidence for a particular response is accumulating (drift  

rate), how much evidence is required before making a response (response threshold), 

and how much time is taken for non-decision aspects of the task (non-decision time). 

These quantities are estimated taking into account the interaction between speed and 

accuracy in the decision being made. This unified account can be much more 

informative about the decision process than independent analyses of accuracy and RT. 

The community using cognitive process models of choice RT has been steadily 

growing. These models have been used to describe the underlying neurology of simple 

decisions (e.g.: Carpenter, 2004; Forstmann, Dutilh, Brown, Neumann, von Cramon, 

Ridderinkhof, & Wagenmakers, 2008; Gold & Shadlen, 2001; Hanes & Carpenter, 

1999; Mazurek, Roitman, Ditterich, & Shadlen, 2003; Ratcliff, Cherian, & Segraves, 

2003; Reddi, 2001; Roitman & Shadlen, 2002; Schall, 2001; Smith & Ratcliff, 2004). 

They have also been used to provide insight into the cognitive processes underlying a 

wide range of simple choice tasks, including elements of reading (Ratcliff, Gomez & 

McKoon, 2004), recognition memory (Ratcliff, 1978), and visual discrimination 

(Ratcliff, 2002; Smith & Ratcliff, in press), as well as more complex decisions, such as 

purchasing a car (Busemeyer & Townsend, 1992). Ratcliff, Thapar and McKoon (2001; 

2003) used a decision model to identify which factors associated with aging were 

responsible for the observed slowing of older participants in simple discrimination 
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tasks. In this application, independent, separate analysis of accuracy and RT would not 

have identified these factors, as they caused a tradeoff between speed and accuracy. 

Wagenmakers, van der Maas, and Grasman (2007) also suggested that variables 

estimated by these models (such as the rate of accumulation of information, drift rate) 

be used to describe data in preference to accuracy and RT. Their approach is akin to 

considering ‘intelligence’ in terms of an intelligence quotient rather than performance in 

individual tasks. Wagenmakers et al. give a good explanation of how the analysis of 

data using decision models can reveal patterns in data that would have otherwise 

escaped the notice of the experimental psychologist, in a manner similar to 

psychometrics. 

Despite their ability to provide insight into the processes underlying decisions, 

the application of decision models has been mostly limited to those already within the 

field of cognitive modelling. This is because the models have been notoriously difficult 

to apply to data, requiring complicated computer programming and mathematics to 

implement (Smith, 2000; Van Zandt, 2000). The models have grown more complex as 

the range of phenomena they can account for has grown (e.g., compare the original 

Ratcliff diffusion model, Ratcliff, 1978, to more recent versions in Ratcliff & Rouder, 

1998 and Ratcliff & Tuerlickx, 2002). Fortunately, there have also been attempts to 

reduce the complexity of choice RT models. Wagenmakers et al.’s (2007) EZ diffusion 

provides simple formula for directly estimating the three key decision parameters based 

on three easily estimated statistics. However, the model underlying the EZ diffusion 

approach is not comprehensive. For example, it fails to account for the latency of error 

responses. Such criticisms do not apply to the “complete” decision making models, such 

as Ratcliff’s. However, the price of this explanatory power is greatly increased 
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mathematical and computational complexity. 

Brown and Heathcote (2008) proposed the linear ballistic accumulator (LBA) 

model as the simplest complete model of choice RT. The LBA is simple in the sense that 

Brown and Heathcote were able to analytically derive the model’s probability density 

function (pdf), which makes efficient estimation tractable using a range of techniques. 

Despite its relative simplicity, the LBA can account for the same breadth of empirical 

two-choice RT phenomena as the Ratcliff diffusion model. In contrast to the diffusion 

model, the LBA can also be applied to choices amongst more than two alternatives. 

Even though the model is in its infancy, it has already begun to be applied to 

experimental data sets (see, e.g., Donkin, Brown & Heathcote, 2009b; Forstmann et al., 

2008; Ho, Brown, Serences, 2009). Forstmann et al. showed that an experimental 

manipulation of speed and accuracy emphasis produced changes in behaviour and brain 

activity which closely agreed with appropriate parameters from the LBA. 

In recent years, the options available for estimating parameters for the Ratcliff 

diffusion model have been increasing, and have become more user-friendly. 

Vandekerckhove and Tuerlinckx (2007; 2008) developed “DMAT”, a MATLAB 

program, which uses methods developed by Ratcliff and Tuerlinckx (2002) to apply the 

Ratcliff diffusion model. Vandekerckhove, Tuerlinckx, and Lee (submitted) have 

implemented the diffusion model into the sampling program for Bayesian inference, 

WinBUGS. Voss and Voss (2007; 2008) offered “FastDM”, standalone C code that also 

implements the Ratcliff diffusion model. Wagenmakers et al. (2007) offered a 

spreadsheet in Excel, a web applet, and some scripts in the statistical language R that 

could all be used to obtain EZ diffusion estimates.

The current paper is motivated by the observation that most previous software 
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offerings for applying choice RT models to data have focused on Ratcliff’s diffusion 

model. Here we provide a similar range of options for estimating the parameters of an 

alternative choice RT model, the LBA. We first review the details of the LBA, and then 

describe estimation software for it developed in Microsoft Excel, R and WinBUGS. We 

then describe additional software developed in R to produce a visual summary of data 

and model predictions. Rather than providing a comprehensive parameter estimation 

environment for a particular paradigm, our aim is to illustrate the different approaches 

in a way that allows users to flexibly extend the analysis to a range of paradigms.  

Overview of the LBA model

Consider a participant who has been presented with a string of letters and asked 

to decide whether the stimulus is a word or a non-word – this decision is represented in 

the LBA as shown in Figure 1. Each possible response (“word” and “non-word”) is 

assigned to an independent evidence accumulator. Evidence accumulation starts at a 

value randomly sampled (separately for each accumulator) from the interval [0, A] at the 

beginning of each trial. The participant gathers information from the stimulus which is 

then used to increment the evidence in either accumulator. Brown and Heathcote (2008) 

made the simplifying assumption that evidence accumulation occurs linearly, at a rate 

termed the drift rate. Drift rate is an indication of the quality of the stimulus: the larger 

the drift rate, the faster the accumulation of evidence occurs. For example, because 

higher natural language frequency words are easier to classify as a word, a string of 

letters that forms a frequently used word, such as “house”, would likely have a higher 

drift rate than the word “siege”, since it is used less often. The drift rates for each 

accumulator vary from trial to trial according to a normal distribution with mean drift 

rates vW (for words) and vNW (for non-words). For simplicity, we assume a common 
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standard deviation, s, for these distributions. Once evidence in one accumulator reaches 

a threshold, b, the response associated with that accumulator is made. Changing the 

threshold parameter changes the amount of evidence required to make a response. For 

example, a lower b produces less cautious responses and an increased b more cautious 

responses. The relative values of b for different accumulators can model response bias – 

an a priori preference for one response over the other. Response latency is given by the 

time taken for the first accumulator to reach threshold plus the time taken for non-

decision aspects of the task such as the motor response and stimulus encoding. Non-

decision time is assumed to have negligible variability, so is estimated by a single 

parameter, Ter. 

Figure 1 Graphical representation of a single decision made by the LBA model.

One way of estimating LBA parameters from data involves the search for a set 

of parameters (b, A, vW, vNW, s, Ter) that produce predictions for accuracy and RT which 

closely resemble the data. The resemblance between data and model is quantified by an 

objective function. A variety of different objective functions are commonly used with 

RT data, including maximum likelihood (Ratcliff & Tuerlinckx, 2002), chi-squared 
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(Ratcliff & Smith, 2004) and quantile maximum products estimation (QMPE; Heathcote 

& Brown, 2004; Heathcote, Brown & Mewhort, 2002). The search for a set of 

parameters which optimise the objective function begins with the choice of parameters 

at some initial values, called a start point. This is followed by a computer-driven search 

that changes parameters until a set is identified which provides a better value for the 

objective function than other nearby sets. Bayesian estimation takes an alternative 

approach that provides a distribution of estimated parameter sets rather than a single set. 

Variability in the distribution quantifies uncertainty about estimation and a measure of 

the distribution’s central tendency, such as the mean, provides a point estimate. Our aim 

here is not to detail or compare these different methods. Instead, we take advantage of 

the ready availability of efficient and general purpose search algorithms (solver in Excel 

and optim in R) and Markov Chain Monte Carlo methods for generating Bayesian 

estimates (WinBUGS) to provide accessible options for estimating LBA parameters 

given a set of data. 

Methods for estimating LBA parameters from data

We use a single set of simulated accuracy and RT data to illustrate the different 

methods of applying the LBA model to a two choice task. The design from which the 

simulated data are derived is typical of designs that the LBA has been applied to: three 

different conditions that vary in decision difficulty – easy, medium and hard. This set 

can be thought of as data from a single participant in an experiment with three within-

subjects conditions. The first few lines of the simulated data are shown in Figure 2, with 

each line representing one choice trial. The first column codes the easy, medium and 

difficult decision conditions, labelled 1 to 3. The second column codes the accuracy of 

the response made, using 0 for incorrect and 1 for correct. The third column contains the 
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response latency of the decision in milliseconds (msecs). We provide an R script that 

simulates data in the same format as our example dataset (‘makedata.r’). For this 

example, we sampled data from an LBA model with the following parameters: s = 0.25, 

A = 300, Ter = 200, b = 400, vE = 0.9, vM = 0.75, vH = 0.6. 

Figure 2 The first 5 lines of data from our simulated data set. The first column contains 
the experimental condition (1-3), the second the accuracy (0=incorrect, 1=correct), the 
third RT (in milliseconds) 

The parameters vE, vM and vH refer to the drift rates for correct responses. We use 

the traditional parameterization which fixes drift rates for the error responses to be equal 

to one minus the drift rate for correct responses (although see Donkin et al., submitted, 

for a different approach). Hence the drift rates for incorrect responses in our example 

data set were 0.1, 0.25 and 0.4 for easy, medium and hard conditions, respectively. To 

keep the example simple, we assumed that drift rate for correct (and error) responses 

was the same regardless of which stimulus was presented on that particular trial. This 

embodies an additional assumption that drift rates are the same for both stimuli 

corresponding to each response (i.e., words and non-words). In more general cases there 

could be four drift rates – a correct and error drift rate for each of the two responses 

(e.g., old and new responses in a recognition memory task, Ratcliff, 1978). We also 

assume that only drift rate changes between the three difficulty conditions, with all other 

parameters constant. This assumption is standard in paradigms where the stimulus 
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factors that are used to manipulate difficulty are mixed randomly within blocks of trials. 

We address the more complicated cases later.

Example 1 – Using Microsoft Excel

We use the file 'lba.xls' to fit the LBA using Microsoft Excel (hereafter Excel). 

The Excel LBA worksheet records the data in Sheet 2 and uses the parameter values in 

Sheet 1 to calculate the likelihood of the data, given the current set of parameter 

estimates – this likelihood value is our objective function. Excel's inbuilt “Solver” 

function is used to find parameters which maximise this likelihood. The quality of the 

fit to data is shown in the histograms presented in Sheet 1. 

The likelihood can be thought of as a measure of the quality of the fit of the model to 

the data, with larger values indicating better fit. The parameters that provide the best fit 

to the data are those that maximise the likelihood, or equivalently the log-likelihood. We 

use log-likelihood as the objective function, rather than raw likelihood, because taking 

logarithms avoids numerical problems associated with multiplying together many very 

small numbers. 

To analyse our simulated data, the three columns of data were pasted directly 

from exampledata.txt into Sheet 2 in columns A-C, rows 2 (hereafter cells A2-C2) and 

onwards. Initial parameter guesses were entered into cells B1-B7 of Sheet 1. The natural 

logarithm of the likelihood of the current set of parameters given the data is shown in 

cell B9 of Sheet 1. The Solver function, which can be found in the Tools drop down 

menu, is then applied1. Solver can then be used to maximise the log-likelihood by going 

to Tools > Solver. A new application box will appear ready for the user to simply click 

Solve. There are numerous options in the Solver function users should feel free to 

1 If the Solver option does not appear in the Tools menu go to Tools > Add-Ins and check the box 
labelled ‘Solver Add-in’.
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experiment with. However, no such changes are required to fit the LBA to our example 

data. Although we do not discuss these options in detail here, we note that by default the 

‘Subject to the Constraints’ section is appropriately set up so that condition #1 is the 

easiest condition, and hence should have the highest drift rate, that condition #2 is the 

next hardest condition, and so on. A number of other sensible constraints can also be 

imposed, such as requiring Ter>0 and b>A.

Figure 3 Screenshot of the Excel LBA worksheet. The plot contains the data from one 
condition as a histogram, with bars showing error and correct responses. Solid lines 
show predictions of the LBA for error and correct responses, respectively. Predictions 
are based on parameter values given in row B in the figure.

A visual summary of the quality of the fit is shown by the plots in Sheet 1, an 

example of which is shown in Figure 3. To create these plots, the user must first place 

the RTs from their data into Column A of Sheet 3. This can be done by copying and 

pasting the contents of Column C of Sheet 2. There are three plots shown in Sheet 1, 

one for each condition. The plots show the correct and error RT histograms for the data 

and the LBA grouped into bins ranging from 300-1500 ms in increments of 200ms. The 

three histograms in the Excel sheet show data and predictions from the easy, medium 

and hard conditions from top to bottom, respectively. The data are shown by the bars of 

the histogram – the actual spreadsheet uses colour figures, in which red bars represent 

error responses and blue bars show correct responses. The predictions made by the LBA 

are shown by solid lines; again, in the actual spreadsheet colours are used to error and 
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correct responses. The predictions shown in the plots are based on parameter values 

given in Column B of Sheet 1. Changing the parameter values by hand causes direct 

changes to the solid lines in the histograms. The LBA provides a good fit to the data 

whenever the solid lines match closely the bars of the histograms that underlie them, 

indicating that the RT distributions predicted by the LBA closely resemble those of the 

data. Once a good fit to the data is achieved, the user can record the parameter values 

reported in cells B1-B7 of Sheet 1. We do not suggest that these histograms are of 

publication quality, however, they do provide the user with a method for quickly 

checking the quality of the fit. We will discuss how to use the parameter estimates to 

create further graphical summaries in a later section.

Sometimes, Excel’s Solver function becomes stuck in a local maximum, rather 

than finding the optimal solution – the global maximum – and then the estimated LBA 

parameters will not provide an accurate account of the data. This occurs when the solver 

finds a set of parameters, say, solution A, that are better than other nearby sets of 

parameters, but are still worse than the (quite different) parameters which provide the 

best fit to the data. Although this problem can be difficult to avoid in general, there are 

some measures that help address it. One method is to start the search again from a 

different starting point. Solution A is likely a global maximum if the Solver function 

repeatedly finds Solution A from a sufficiently wide range of starting points. 

The choice of initial estimates for any method of fitting a model to data can be 

very important –automatic optimisation routines (like Solver) can fail badly if the initial 

estimates are poor. Choosing good initial estimates is something of an art that often 

requires experience and experimentation. This process is made relatively easy thanks to 

the interactive nature of the Excel spreadsheet we have provided. The effects of 
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changing parameters can be instantly observed by looking at the plots in Sheet 1. The 

initial estimates need not produce a set of solid lines that closely resemble the data; all 

that is really necessary is that Solver be given parameters that produce a solid line that 

has approximately the shape and location of the observed RT distributions. As a rough 

guide, the parameters used to generate our simulated data would be a good starting point 

for parameter search for new data sets as they approximate average parameter values 

from fits to a range of different paradigms.

Given the wide range of possible data sets, it is impossible to create an Excel 

workbook that will work ‘out of the box’ for every case. For example, simply changing 

the number of observations in each condition requires the user to change certain aspects 

of our worksheets. However, given the flexibility and intuitive nature of data 

manipulation in Excel, the changes required to adapt the LBA workbook to a new 

datasets should usually be relatively simple. For example, if the number of observations 

in each condition does change then the user has to update the entry in C12 of Sheet 1 

and make sure columns G-O are the same length as the data which has been entered.

Example 2 - Using R

To estimate LBA parameters from our example data using R, the user begins by 

extracting the files in ‘Rfit.zip’ into a directory. The R language is free software 

available for Windows, Mac OS X and Linux. It can be downloaded from the R 

homepage http://www.r-project.org/. Once you have downloaded and run the executable 

install file, follow on-screen instructions to install the R software. Extracting the 

contents of the ‘Rfit.zip’ file into a folder (e.g. Desktop\Rfit) provides four files – ‘lba-

math.r’, ‘pq-lba.r’, ‘fit-example.r’ and ‘exampledata.txt’. The .r files all contain R 

scripts that are used to estimate parameters for the LBA model from the example data 
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contained in the .txt file. To begin the estimation process, the user should open the R 

software and change the working directory to the folder where the zip file was extracted 

(i.e. Desktop\Rfit), for example by using the File > Change dir option. Typing 

source(“fit-example.r”) fits the LBA to the data found in the exampledata.txt file. 

The R prompt will disappear while the software searches for a set of parameters which 

best fit the data. Once search is finished the estimated parameters are printed on screen. 

Using the source function in R is equivalent to entering each line contained in 

the ‘fit-example.r’ R script directly into the R window. To see what is being run by the 

source command you can open the ‘fit-example.r’ file in any text editor. The first 

command sources the ‘pq-lba.r’ script, which in turn sources the ‘lba-math.r’ script. 

These two scripts set up the functions that encode the basic mathematics of the LBA 

model. Some variables are then defined - qps gives the set of quantiles of the RT 

distribution to be used by the QMPE method of fitting the LBA and trim gives the 

minimum and maximum values used to censor the RT data. We set trim to remove RTs 

faster than 180 ms and greater than 10 seconds. The R read.table function reads the 

contents of ‘exampledata.txt’ file, maintaining the column structure and giving the 

variables the names “difficulty”, “correct” and “rt”. The user can change the name of 

the first argument of the read.table call to change what data file being read by R. 

However, they would need to ensure that the data followed the same structure as that of 

the exampledata.txt file, or else change other aspects of the R script appropriately. 

The next section of script transforms the imported data into the format required 

for the QMPE fitting technique. Because QMPE is based on quantiles (i.e., order 

statistics such as the median) it provides more robust estimates than maximum 

likelihood in small samples (Brown & Heathcote, 2003; Heathcote, Brown & Mewhort, 
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2002). In the example the estimates are based on five quantiles (.1, .3, .5, .7 and .9) for 

both correct and error RTs in the different difficulty conditions and storing them in the 

array, q. The number of observations in each quantile bin is also calculated and stored in 

pb. Response accuracy and sample sizes for correct and incorrect responses in each 

difficulty condition are also calculated and stored in p and n, respectively. Finally, these 

variables are finally bundled together in a list and stored in the variable data. 

Once the data are formatted correctly, the parameter search is called by the 

fitter function. There are two arguments required by the fitter function. The first is the 

dat argument, which in our example is the data list. The maxit argument specifies the 

maximum number of iterations that should be used when searching for best fitting 

parameters. Like the Excel workbook described earlier, R finds best fitting parameters 

by, at each step, systematically changing parameters and keeping changes which 

provide a better value for the objective function. The maxit argument specifies how 

many steps are taken when trying to find a set of parameters which best fits the data. 

The parameters which arise out of the fitter function are placed into the pars 

variable. The last few lines of the script transform the parameter values returned by the 

fitter function to those that are familiar to the reader from our explanation of the 

LBA. Figure 4 shows the R output after fitting the LBA to the example dataset. 

Figure 4 Screenshot of the use of R to fit the LBA to our example dataset. 

Unlike the Excel worksheet, the majority of the code which does the fitting in R 

is hidden in the ‘pq-lba.r’ and ‘math-lba.r’ scripts. The parameter values used to 
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initialise the search for best fitting parameters are produced automatically as part of the 

fitter function defined in the ‘pq-lba.r’ script. These heuristics can be found, clearly 

labelled, in the ‘pq-lba.r’ file. These estimates will work in many situations but in a 

small number of cases will be inadequate, such that fitting algorithm will be unable to 

find good parameter estimates. Such cases reinforce the need to use the graphical 

summary methods given below to check the quality of a fit. To use these scripts with 

other data sets where only changes in drift rate are extended across conditions, only the 

file ‘fit-example.r’ need be edited by the user. In this situation, the user must simply 

change the ndrifts parameter to be equal to the number of conditions in the data. 

When other parameters are allowed to vary across conditions then more 

substantive changes are required. For example, Donkin, Heathcote, Brown and Andrews 

(submitted) propose that in a lexical decision task both drift rate and non-decision time 

vary with word frequency. Say we have three frequency conditions and so we wish to 

estimate three values of drift rate, v, and three values of non-decision time, Ter. In such a 

situation the user would update the fitter function in ‘pq-lba.r’ so that starting points 

are generated for v1, v2, v3 and Ter1, Ter2, Ter3. The obj function should then also be 

updated to take into account these changes. Specifically, the par vector passed to the 

obj function will be two elements longer – it used to contain s, A, Ter, b, v1, v2, v3 and 

now has s, A, Ter1, Ter2, Ter3, b, v1, v2, v3. The getpreds function expects to receive from 

obj, for each parameter of the LBA, a vector which is has length equal to nc, the 

number of conditions (3 in this case). This means that where we would have previously 

have replicated Ter nc times (the line: Ter=rep(par[3],nc)) we now use three free 

parameters (Ter=par[3:5]), in just the same way as we previously used three separate 

drift rate estimates (previously v=par[5:7], now v=par[7:9]). 
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To analyse data with more than one factor, further changes to the ‘pq-lba.r’ file 

need to be made. For example, we may have a difficulty manipulation which varies 

between trials and a speed-accuracy emphasis manipulation which varies between 

blocks of trials. In this case, it’s customary to fit an LBA where v varies between 

difficulty conditions and where b and A vary between emphasis conditions. We begin in 

the same way by first generating start points for each of the parameters to be estimated 

within the fitter function. However, in the obj function, rather than producing a 

vector of length nc for each parameter, we must now produce a matrix with nc rows and 

2 columns, one for speed emphasis parameters and accuracy emphasis parameters. This 

also means that where the getpreds function used to take one element of the parameter 

vector (by using a loop over 1:nc), it will now have to take one element of the matrix of 

parameter values (using two loops, one over 1:nc and another over 1:2). Obviously, as 

the design of the data and the LBA model to be fit becomes more complicated, so too 

will the R code needed. For those readers whose programming skills may be limited we 

later provide code for WinBUGS which can be more easily adapted to more 

complicated models. 

Multiple Choice Data

One of the advantages of the LBA is its ability to model multiple choice data 

(see Brown & Heathcote, 2008, for a demonstration). To illustrate we provide code 

which can be used to simulate a set of data from an LBA with four accumulators, 

corresponding to a choice between four response alternatives. The code then fits the 

four-accumulator LBA model to the simulated data to recover the parameters. The data 

are simulated to mimic an experiment in which a participant is presented with one of 

four ‘random dot kinematograms’ (RDKs) – a set of pixels of which a small proportion 
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move coherently in one direction which must be identified by the participant, while the 

others move randomly. The difficulty of the task was also manipulated to be easy, 

medium or hard. Ho, Brown and Serences (submitted) fit the LBA to an experiment 

using this paradigm. The code necessary for simulating and fitting the multiple choice 

data is contained in the ‘Rmultifit.zip’ file. After extracting the files data can be 

simulated and fit using source(“fit-multi.r”). The parameters are estimated by 

maximum likelihood, printed on screen and histograms containing data and model 

predictions are produced. We used maximum likelihood estimation in this case to 

illustrate how the R code described in the last section can be adapted for a different 

objective function. 

The ‘fit-LBA.r’ script is completely self-contained, in that we are not required to 

source the ‘lba-math.r’ or ‘pq-lba.r’ files. We do this because the code required for 

maximum likelihood estimation is relatively simple compared to that of QMPE. The 

data are simulated, and starting values are generated for the parameters we wish to 

estimate using similar heuristics to those used in our other R code. We then define our 

objective function, obj. Since we are using maximum likelihood our obj calculates the 

likelihood of each RT value given a set of parameters pars. Finally, we include a set of 

code for producing histograms of observed and predicted RT distributions for each 

response in each difficulty condition. 

For both simulating and fitting the data we assumed that all parameters were 

fixed across stimuli, suggesting that participants show no bias for one particular 

direction of pixel flow. The simulated data used a large drift rate corresponding to the 

correct response; the size of this drift rate varied for easy, medium and difficult 

conditions. We reasoned that incorrect responses were more likely in the two directions 
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orthogonal to the correct response, and less likely in the direction opposite the correct 

response. To instantiate this, we used only two free parameters for the three error 

response alternatives: one value to set the fraction of the correct-response drift rate 

assigned to the orthogonal responses (we used 0.5) and one value to set the fraction 

assigned to the opposite response (0.25 in our simulated data). We simulated the data, 

therefore, using 5 parameters associated with drift rate – three drift rates for the correct 

responses in each condition, and a parameter indicating the proportion of the correct 

drift rate for perpendicular incorrect responses and a parameter indicating the proportion 

of the correct drift rate required for opposite direction incorrect responses. When fitting 

the data, to fully demonstrate the method for estimating parameters from a multiple 

accumulator LBA model, we made no assumptions about relationships between drift 

rates. We estimated 12 drift rate parameters – one for each of the four responses in the 

three difficulty conditions. Figure 5 shows parameter values returned by our maximum 

likelihood fitter. The parameters reported are close to the parameters used to simulate 

the data (A=300, b=400, Ter=300, ve=.9, vm=.75, vh=.6, pperp=.5, popp=.25). The histograms 

in Figure 5 also demonstrate that the predictions from the LBA match closely the 

observed data. The biggest misfit is to RT distributions for error opposite responses. 

These responses are the most incorrect and are made least often. Therefore, RT 

distributions for these responses are made up of relatively few observations and hence 

estimation of parameters for these responses is more erroneous.
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Figure 5 Screenshot of the R code and resultant output used to fit data simulated from a 
four-accumulator LBA model. Data are represented by the bars of the histogram. 

Example 3 – Using WinBUGS
Bayesian analysis in psychological research is rapidly gaining popularity for a 

range of reasons, such as providing estimates that perform well in predicting new data 

sets and that take account of model flexibility (Wagenmakers, Lee, Lodewyckx, 
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Iverson, 2008; see Raftery, 1995, and Wasserman, 2000, for general introductions). 

Bayesian analysis starts by assuming a “prior” distribution of parameter estimates (i.e, 

distribution before new data is taken into account). It then combines the prior with the 

observed data to produce a “posterior” distribution of parameter estimates (i.e., 

estimates updated by the new data). The process of Bayesian estimation has been made 

relatively easy by the availability of flexible programs, such as WinBUGS (Lunn, 

Thomas, Best & Spiegelhalter, 2000), which use general purpose Markov Chain Monte 

Carlo (MCMC) methods to obtain samples from the posterior distribution (see Calin & 

Chib, 1995). We demonstrate how WinBUGS can be used to fit the LBA to data, 

including instructions for compiling and running WinBUGS, as well as reviewing and 

saving the results. 

WinBUGS makes MCMC methods available to researchers with relatively little 

programming and mathematical knowledge through a graphical user interface. The 

Appendix to this paper provides instructions for installing WinBUGS and the 

WinBUGS Development Interface and BlackBox Component Builder2. The latter two 

programs are used to give WinBUGS access to the LBA probability density function 

(pdf). The zip file ‘BugsLBA.zip’ contains a compound document (odc file) that defines 

the LBA pdf (‘lba.odc’). As described in the Appendix, a one-time installation 

procedure is required to enable WinBUGS to sample from the LBA posterior. Once this 

procedure is complete WinBUGS should always be launched from the BlackBox 

installation folder.  

The zip file also contains a file that defines the WinBUGS model and data 

2 WinBUGS requires Microsoft Windows to operate, and although a platform-independent version, 
OpenBUGS, does exist, the lack of equivalent multi-platform versions of the BlackBox and WBDev 
software means that our implementation of the LBA into a Bayesian framework is restricted to the 
Windows operating system. 
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specific to the current example (‘fitlbaexample.odc’). The model and data specifications 

are contained in separate sections of the fitlbaexample.odc compound document. The 

model section of ‘fitlbaexample.odc’ specifies uniform prior distributions (dunif) for 

each of the LBA parameters (A, b, v, s, Ter). The parameters of the uniform priors were 

chosen to be relatively uninformative. That is, the range of the uniform priors is chosen 

to span a broad range of plausible parameter values. When it covers a sufficiently broad 

range, the prior is not overly influential on the posterior estimates given a reasonable 

amount of data. For the A parameter, for example, the uniform prior distribution ranges 

from 0.1 to 13. 

Specification of overly broad priors can cause WinBUGS to fail, so some 

experimentation can be required to obtain a computationally stable but sufficiently 

uninformative prior. Relatively uninformative priors produce WinBUGS estimates that 

do not differ greatly from the estimates obtained from the two methods presented 

previously. A section containing initialising values (called inits) for the MCMC 

sampling can also be added to fitlbaexample.odc, but this is only necessary when the 

inits automatically generated by WinBUGS fail. Such failures are most common when 

priors are broad. Specifying appropriate inits can help to protect against failures of 

WinBUGS when broad priors are utilized.  

As with the previous methods, we estimate different drift rates, v, for each of the 

three conditions. In WinBUGS this is achieved by letting v be a vector containing three 

priors, one for each of the three conditions. In our example code all of the v priors are 

identical and relatively uninformative, however, this need not be the case – different 

priors for the drift rate for each condition could be imposed if desired. The final line of 

3 In our example the priors for the A, b and Ter parameters are defined in seconds. This means that 
reaction times given to WinBUGS should also be in seconds. This can be done by simply dividing the 
reaction times in the exampledata.txt file, which are in milliseconds, by 1000.
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the model section connects the RT data, defined as the variable t in the next (data) 

section, with the previously defined parameters (and their priors) via the pdf for the 

LBA. 

The next section of fitlbaexample.odc contains a modified specification of the 

data contained in exampledata.txt to. In order to allow WinBUGS to handle bivariate 

data (response time and accuracy) we follow the common practice (Vandekerchove et 

al., submitted; Voss, Rothermund & Voss, 2004; Voss & Voss, 2007; Voss & Voss, 

2008): Let RT be the observed response latency for a particular response and let t be the 

data given to WinBUGS. If the response is correct then code t = RT, and if a response is 

incorrect then code t = -RT. This enables both accuracy and RT information to be 

specified in a single variable. The data section also defines other variables used in the 

model section. For example, the number of data points, N, is defined as 3000. The 

condition for each response is defined by the entries in the cond variable; the first 1000 

have ‘1’ indicating that the first 1000 RTs are from condition 1, the next 1000 having 

‘2’, and so on. 

The following steps compile the model and obtain posterior samples. 

1. Open the ‘exampledata.odc’ file from within WinBUGS (recall that this must be 

run from the BlackBox directory). Once opened, highlight word “model” at the 

top of document and select Model> Specification, this will open a dialog box 

labelled ‘Specification Tool’. From inside the Specification Tool select ‘check 

model’ and if all parameters are given priors then a message “model is 

syntactically correct” will appear in the bottom left of the screen.

2. Either a single MCMC chain (default) or multiple chains may be run. In our 

example we use three chains by typing “3” in the ‘num of chains’ box. Having 
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multiple chains helps the user to check whether the MCMC chain converges to 

the posterior distribution. 

3. Highlight the word ‘list’ at the start of the data section and choose ‘load data’ 

from the specification tool dialog box. A message “data loaded” will appear in 

the bottom left of the screen. If an error occurs it is most often due to 

misspecification of variables used in the model section (i.e., N, nc, cond 

variables in our example code).

4. Select ‘compile’ from the specification dialog box; if everything is correct the 

bottom left of the screen should be displaying the message “model compiled”. 

5. Select ‘gen inits’ to have WinBUGS to generate initializing values for each of 

the three chains. After the initializing values have being generated the bottom 

left of the screen will have the message “model initialized” indicating WinBUGS 

is ready to run. 

Before beginning MCMC sampling the user must indicate which posterior parameter 

estimates are to be saved for later analysis. This is done via the Inference> Samples 

menu, which will bring up the ‘Sample Monitor Tool’ dialog box. The following two 

steps set up monitoring and run the sampling. 

6.     Type the variable name into the ‘node’ section. For example, if we wished to 

monitor the A parameter enter ‘a’ into the node section (as this parameter was 

defined as ‘a’ in the model section). You are then required to choose at what 

iteration to begin and end the monitoring. The value you put in ‘beg’, which 

represents the number of iterations of the MCMC chain that are discarded before 

monitoring, is commonly referred to as the burn-in period. In our examples we 

used a burn-in period of 10,000 iterations. Since the MCMC chain begins with 
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inits values which may not represent valid samples from the posterior, a burn-in 

period is required before the MCMC chain converges to the posterior 

distribution. The ‘end’ value represents the length of the MCMC chains; in our 

example we set this value at 21,000. This will, if the chains converge, result in 

11,000 samples from the posterior distribution. Larger values of end cause 

sampling to take longer to complete, but provide more information about the 

posterior. The process is then repeated for each parameter the user wishes to 

monitor. In our example we monitored all seven parameters (A, b, s, Ter, v[1], 

v[2], v[3]).       

7. Select Model> Update and the ‘Update Tool’ dialog box will appear. Typically 

you will enter the same number in the ‘updates’ section as you did in the ‘end’ 

section of the Sample Monitor Tool dialog. Here, you have the option of 

thinning the MCMC chain. Thinning discards iterations in order to reduce 

autocorrelation amongst the posterior samples4. For example, if ‘thin’ is set to 

two then every second iteration will be recorded, and so it will take twice as long 

to obtain the number of iterations specified in the updates section. In our 

example we set thin at two for every parameter. The refresh section indicates 

how often WinBUGS updates the screen which indicates to the user how many 

iterations of the chain have occurred. Setting a large value reduces processing 

time. Clicking the update button causes sampling to commence.

While WinBUGS is generating samples the words “model updating” will appear at the 

bottom left of the screen. This process can take a long time and is uninterruptible once 

4 MCMC chains typically are strongly autocorrelated. Autocorrelation is not a problem for parameter 
estimation, except that the information contributed to the estimate by each sample is reduced. However, it 
can be problematic when the variability of samples is important (e.g., when calculating confidence 
intervals on estimates).  
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begun, so it is prudent to double check that all parameters are being monitored and that 

prior specification is as desired. Once WinBUGS has run through the desired number of 

iterations a message “Update took x secs.” will appear in the bottom left hand corner of 

the screen and results become available for analysis. 

Figure 6 Screen grab from WinBUGS. Shown is the model code, the Update Tool, the 
Sample Monitor Tool and output from the density and stats options for parameter A. 

To look at the results for each parameter return to the Sample Monitor Tool. 

Select the parameter of interest from the node drop down menu. Once a node is selected 

statistical and diagnostic options are highlighted. Amongst the many available choices 

we will focus on the ‘density’, ‘stats’ and ‘compare’ options. Figure 6 displays the 

‘stats’ and ‘density’ outputs – ‘Node statistics’ and ‘Kernel density’, respectively – for 

the A parameter. Clicking on the ‘density’ option will display a density plot of the 

parameter of interest. This is a plot of the posterior estimates returned by WinBUGS for 

each of the iterations that was monitored. Once the MCMC chain has converged, (i.e., 

when the burn-in period is large enough), this density plot will approximate the 

marginal posterior distribution of the parameter. The quality of the approximation will 

increase as the number of iterations, or the length of the MCMC chain, increases. Figure 
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6 shows that, in our example, where 11,000 iterations were used to generate the 

posterior distribution, that the majority of the density plot is close to the true value of 

0.3. 

The ‘stats’ option provides commonly used statistics, such as mean and variance, 

as well as quantile information, for the chosen parameter. Generally, this summary 

provides the information used to derive parameter estimates for the LBA. Either the 

median or mean of the posterior distribution can be used as a parameter estimate. When 

the statistic is symmetrically distributed, as in Figure 6, there is little difference between 

these different estimates. The mode of the posterior distribution equals the maximum 

likelihood estimate of the parameter (e.g., as generated by our Excel worksheet). 

Although WinBUGS doesn’t directly return the mode of the distribution, the ‘coda’ 

option can be used to save monitored posterior samples to a text file which can be 

analysed in another statistical package to obtain the mode.

The WinBUGS ‘compare’ option, found in the inference drop down menu, can 

be used to obtain graphical representations of credible intervals. A credible interval 

estimates the range within which, given the data and the prior distribution, the true value 

of a parameter lies. Selecting the ‘compare’ option casues a dialog box to appear that 

requires at least one variable name to be entered. Type the variable of interest into the 

top left dialog box and select ‘box-plot’. This will produce a box-plot where the 

whiskers represent, by default, the 95% credible interval. The whiskers correspond to 

the 2.5% (lower whisker) and 97.5% (upper whisker) columns in the node statistics 

output, as credible intervals are based on the quantiles of the posterior distribution. 

Figure 7 shows the credible intervals for each of the three drift rates defined in the v 

parameter, the horizontal line going from one side to the other is the group median. The 
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plot also shows that the credible regions do not overlap suggesting that the drift rates 

differ from one and other. 

Figure 7 Box-plot representing the 95% credible regions of the drift rate for each of the 
three conditions, easy (1), medium (2) and hard (3). The line cutting through the centre 
of the plot represents the median of all three conditions.

The Sample Monitor Tool can also be used to check that the MCMC chain has 

converged to the posterior distribution using the ‘history’ option. An example of the 

output produced by this option is shown in Figure 8. The vertical axis of the plot 

indicates the parameter estimate for A for the iteration of the MCMC given by the 

horizontal axis – collapsing this plot onto the vertical axis gives the density function 

shown in Figure 6. Each of the chains is represented by a different grey scale and here 

we see the three MCMC chains for the A parameter in our example overlap greatly. In 

other words, they all appear to be random samples from the same distribution 

throughout the entire chain. This suggests that all chains are samples from the posterior 
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distribution of the parameter A. If any of the chains looked systematically different from 

the others, perhaps showing greater variance, or a different mean, it would suggest a 

lack of convergence of the MCMC chains to the true posterior distribution. The ‘auto 

cor’ option in the Sample Monitor Tool can also be used to check if further thinning is 

needed. It displays the correlation between parameter estimates for iterations i and i – k 

for k = 1 through 50.

Figure 8 Output produced from the ‘history’ option for the a parameter from our fits of 
the LBA to example data. Notice that the three chains (indicated by different shades of 
grey) greatly overlap, indicating that all chains have converged upon the same posterior 
distribution.

Changing model parameterization is very simple within WinBUGS. The user 

must define a new prior for each of the parameters they want estimated and makes a 

small adjustment to the call to the LBA pdf. For example, say we were again fitting 

lexical decision data and wished to estimate a different non-decision time, Ter, for each 

word frequency condition. Then we need only augment the WinBUGS model 

specification to have a vector for the parameter Ter with a prior distribution for each of 

the three frequency conditions and make the call to the LBA pdf include this extra 

information. Specifically, to make our priors, when we would have previously used Ter 

~ dunif(0.1,1) we instead use a for loop to set Ter[k] ~ dunif(0.1,1) for k in 

1:3, as is done for drift rates. Finally, where we would have previously used t[i] ~ 

dlba(b,A,v[cond[i]],s,Ter) we now would use Ter[cond[i]]. To use the 
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WinBUGS code we provide with multiple choice data would require a substantial 

change to the code for the LBA pdf, ‘lba.odc’ along the lines of the R code we provide 

for fitting multiple choice data, but is beyond our scope here.  

Using R to create a graphical summary given parameter values

We also provide R code that can be used to create a graphical summary of the 

data and model predictions. This process is useful in determining the appropriateness of 

the parameter estimates returned by our various methods. The code we provide requires 

that the user first enters the parameters produced by one of the three methods previously 

described (or indeed, any method). The user must then source the ‘makegraphs.r’ file 

within R, which defines two functions for producing two plots – histograms similar to 

those described in Example 1, and a quantile probability (QP) plot. The qpplot and 

histplot functions provide plots that are suitable for checking parameters, and can also 

be adapted to produce figures suitable for publications (see, for example, Maindonald, 

2008, at http://cran.r-project.org/doc/contrib/usingR.pdf). 

Ensure, first of all, that the R software is installed (refer to the guide in Example 

2 if this is not done). Once installed, extract all of the files in the ‘graphs.zip’ file into 

the same folder. This folder should now contain ‘pq-lba.r’, ‘lba-math.r’, ‘makegraphs.r’ 

and ‘exampledata.txt’. Now open R and make sure that the folder that the files were 

extracted to is set as the working directory in R (again, see Example 2). The user must 

first enter the parameters into a vector called pars in the following order: s, A, Ter, b, vE,  

vM, vH. The units for A, Ter and b should be in milliseconds. This means that parameters 

from the WinBUGS version of the LBA, which are returned in seconds, will have to be 

multiplied by 1000. Parameter values should be entered as a vector, for example 

pars=c(0.25,300,200,400,0.9,0.75,0.6). The user should then type 
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source(“makegraphs.r”), which does two things: it first reads in the data from the 

‘exampledata.txt’ file, and then defines two functions, histplot and qpplot. 

The histplot function produces a plot which contains six histograms, one for 

error responses and one for correct responses for each difficulty level. An example of 

this plot is shown in Figure 9. The data are represented by the black bars of the 

histogram, with the predictions of the model shown by the solid line. The top row of the 

plot shows the correct responses and the bottom row shows histograms for the error 

responses. The order of difficulty of the conditions is easy to hard from left to right. The 

histplot function has five arguments. Two are required: data, which must be 

formatted in the way that is produced by the read.table function contained within the 

‘makegraphs.r’ script, and pars, which must be entered in the exact form given above. 

There are three optional parameters: minx and maxx define the smallest and largest RT 

values shown in the histogram, the third, bindiff defines how wide (in msec) the bins 

of the histogram are. It is essential that bindiff divides evenly into the difference 

between minx and maxx. To create the plots shown in Figure 9 we used the call: 

histplot(data,pars).
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Figure 9 An example of the plot produced by the histplot function. Correct responses 
are shown in the top row, error responses on the bottom row. Difficulty of the decision 
goes from easy, medium to hard in order from left to right.

The qpplot function accepts four arguments. The two that are required – dat 

and pars – are of the same form as for the histplot function. The two optional 

arguments, tmin and tmax, define the fastest and slowest RT data points used to 

obtaining parameter estimates. They are, by default, set at 0 and ∞, respectively, 

indicating that no data were censored during estimation. Figure 10 shows an example of 

the QP plot produced by the qpplot function. The QP plot gives the majority of the 

important information shown by the histograms, but accomplishes this with one graph. 

It does this by taking each of the six histograms and summarising them with five 

quantile values. The quantiles for each of the histograms are placed onto the one plot. 

This results in the accuracies for the correct and error responses for the three difficulty 

conditions being indicated by the horizontal position of the six dots across the QP plot. 
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The right half of the plot (response probability above 0.5) shows the correct responses 

and the left half (response probability below 0.5) gives information about the error 

responses. The vertical position of the five points above each of these six accuracies 

refer to .1, .3, .5, .7, .9 quantiles of the RT distribution for each of the correct and error 

responses in the three difficulty conditions. The quantile values are the proportion of 

responses under which a given proportion of RTs in the distribution fall (e.g. the 0.5 

quantile is the median). As an example, consider the bottom right point of the plot. The 

rightmost points of the plot refer to those decisions with the highest accuracy – in other 

words, the RTs from the correct responses in the easiest condition. Conversely, the left-

most points are the error responses in the easiest condition. The bottommost point on 

the QP plot refers to the .1 quantile of the RT distribution. The .1 quantile of the RT 

distribution gives the value below which 10% of the RTs fall. Hence, the bottom right 

point of the QP plot gives the value below which 10% of the RTs for the correct 

responses in the easiest condition occur. To make the plot shown in Figure 10 we used 

the call: qpplot(data,pars)
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Figure 10 An example of the plot produced by the qpplot function. Proportion correct is 
shown on the x-axis, reaction time (in ms) shown on the y-axis. Data is shown by the 
dotted line with filled points, the LBA predictions are shown by the solid line. 

The Effect of Sample Size on Parameter Estimates

We have provided four different methods for fitting the LBA to data – one of 

these specifically for fitting multiple choice data. For the other three cases we have fit 

the model to a set of simulated data with 1000 observations in each of three conditions. 

In practice, there are often considerably fewer observations per condition. To investigate 

how well parameters for a two choice task are recovered by each of our methods for a 

range of sample sizes, we conducted a simulation study. We simulated ten sets of data 

for each of four different sample sizes – N = 50, 100, 400 and 1000 observations per 

condition. The data were simulated using the same parameter values used to generate 

our example data, and are shown in Table 1. 
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Table 1 Bias and standard deviation of parameter estimates, as a percentage of the true 
parameter value, from three methods of fitting the LBA for four different values of N 
(samples per condition) averaged over ten data sets. The three methods are E: Excel, R: 
R, and W: WinBUGS. The final column contains the average time, t, taken per 
simulation (in seconds). Times were estimated using a single core of a Pentium quad-
core Q6600 2.4GHz processor. 

vE

0.9
vM

0.75
vH

0.6
A

300
b

400
Ter

300
s

0.25True

bias sd bia
s sd bia

s sd bias sd bias sd bias sd bia
s sd N t

E NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

R -11 27 -2.7 12 -3.3 6.7 6.7 33 4.3 12 -4 36 -4 20 50 48

W -7.8 7.8 -9.3 9.3 -3.3 5 -4.3 16 -4.8 4.5 -1.3 10 -16 24 124

E 5.6 5.6 6.7 2.7 1.7 3.3 5 11 2.8 4 6 11 28 8 2

R 4.4 8.8 5.3 4 0 5 7.3 10 -1.5 7 12 15 12 20 100 48

W -2.2 4.4 -2.7 4 0 5 1 10 -1.5 6.3 2.7 6.7 -4 8 231

E 2.2 2.2 4 2.7 1.7 1.7 -2.3 6 0.5 2.5 -0.7 2 20 4 9

R 0 6.7 1 5.3 1.7 3.3 2 10 -0.25 2.4 1.3 14 4 8 400 48

W 0 3.3 -1 2.7 0 1.7 0 4.3 3 9.5 -1.3 5.7 0 8 934

E 4.4 1.1 4 1 1.7 1.7 0.7 3 1.3 1.5 2 3 20 4 21

R 2.2 2.2 2.7 2.7 0 1.7 3 5 -0.25 1.8 5 7 8 8 1000 48

W 1.1 2.2 0 1 0 1.7 2 4 2.8 8.3 1.3 3 0 4 2308

Table 1 shows the average bias and standard deviation in parameter estimates, 

expressed as a percentage of the respective parameter value, for each of our three 

methods – the Excel sheet, the R code and WinBUGS5. For all methods we observe the 

expected pattern that as sample size decreases the bias and standard deviation of 

parameter estimates increase. The size and rate at which this happened varied between 

our methods. When sample size was only 50 observations per condition the Excel sheet 

failed to recover parameters. Note, however, that once sample size increased to 100 

observations per condition that the parameters were recovered reasonably well even by 

the Excel sheet, perhaps with the exception of s. Note also that for the Excel sheet, 

although there was a reasonable reduction in both bias and standard deviation of 

parameter estimates when N increased from 100 to 400, the increase from 400 to 1000 

made very little difference. For R and WinBUGS when N is only 50 the drift rate in high 

5 We use the mean of the posterior distribution to determine bias in parameter estimates in WinBUGS. 
Note that we could have also used an alternate measure of central tendency such as the median.  
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accuracy condition is overestimated. This is reasonable because, with only 50 samples 

and high expected accuracy, there are very few error responses in this condition. Note 

that for 100 samples per condition or more that there is relatively little bias in parameter 

recovery for any of the techniques and the standard deviations for each of the 

parameters are small and decrease at a rapid rate as N grows. 

Fixing Parameters Across Conditions 

When estimating model parameters, we made the assumption that only drift rate 

should vary between conditions. This assumption is the one usually made when the data 

come from an experiment where the conditions correspond to different stimuli presented 

within-subjects and that vary unpredictably from trial to trial. This is because 

parameters such as b, which determines the amount of evidence required to make a 

response, are thought to be under the strategic control of the participant. Ratcliff (1978) 

argued that these participant-determined parameters can not be adjusted on a trial-by-

trial basis depending on which stimulus is presented. If, however, we were to fit data 

with conditions that varied between blocks of trials, or between participants, then it is 

reasonable to expect that parameters such as b could vary across these conditions. For 

example, if participants were instructed to respond as accurately as possible in one 

block of trials, given a break and then told that for the next block of trials to respond 

with speed emphasis, then we could expect that the participant has been given enough 

time to adjust their cautiousness in responding by adjusting their b parameter. 

In our simulated example, because we knew exactly what parameters generated 

the data, it was straightforward to decide which parameters should vary across 

conditions. In practice, we will not necessarily know what parameters are expected to 

vary across conditions. Researchers should, therefore, fit a number of different versions 
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of the LBA where we change which parameters are allowed to vary across conditions 

and then select the model which provides the best account of our data. This approach is 

not straightforward, however, because adding extra parameters will always give a fit 

that is at least as good as the less complex model, even if the extra parameters overfit 

(i.e., only accommodate noise in) the data. What is required, therefore, is a measure 

which only improves if the extra parameters provide a genuine improvement. This is 

usually accomplished by penalizing a model for having extra parameters. Many such 

measures exist, but we focus on three easily computed options, the Akaike information 

criterion (AIC), Bayesian information criterion (BIC) and Deviance information 

criterion (DIC). Each measure uses deviance (-2 times the log likelihood) as its measure 

of misfit but applies a different complexity penalty. BIC provides the largest penalty for 

having more parameters – klog(N), where k is the number of parameters in the model 

and N is the number of data points, AIC applies the smallest penalty – 2k, and DIC, 

which can only be calculated from Bayesian outputs, applies a penalty which is often 

somewhere between AIC and BIC in its severity. The DIC measure is based on an 

estimate of a model’s effective number of parameters, pD, which takes account of 

differences in the functional form between models (see Spiegelhalter, Best, Carlin & 

van der Linde, 2002 for details of the calculation of pD). For each of these measures, 

the model that produces the smallest value is the one that best accounts for the data, 

given both goodness of fit and model complexity. 

To demonstrate these model selection methods we fit our example data, where 

we know that only drift rate varied between conditions to generate the data, with two 

different versions of the LBA – one with only drift rate varying between conditions and 

another where b, A, Ter and v were allowed to vary across conditions. We report the 
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results of using WinBUGS to estimate parameters here, however, when we used our R 

code we found the same pattern of estimates. The deviance for the more complex model 

was -293.6 compared with -294 for the model where only drift rates were allowed to 

vary. In other words, there was very little improvement in the quality of the fit when 

parameters other than drift rate were allowed to vary across conditions. After adding the 

various complexity penalties, all three measures of model fit were smaller for the LBA 

when only drift rate varied across conditions (AIC: -277.99 vs. -277.59; BIC: -238 vs. -

190; DIC: -287 vs. -281). This tells us that allowing parameters other than drift rate to 

vary across conditions gives an increase in quality of fit which is not large enough to 

warrant the complexity of the extra parameters. Indeed, when we looked at the 

parameter values estimated in the LBA where b, A, Ter were also allowed to vary, we 

observed almost no change across difficulty conditions. The same principles can be used 

to try any number of other parameter constraints, such as allowing fewer parameters to 

change across conditions. 

General Discussion

We have provided four different methods for fitting the LBA to data – one of 

these specifically for fitting multiple choice data. Our aim was to provide the potential 

user of the LBA with three separate methods for implementing estimation. We (and 

others; e.g. Wagenmakers et al., 2007) would argue that mathematical models of choice, 

such as the LBA, can provide an important tool for data analysis that can provide much 

more information about decision processes than the typical ANOVA method applied to 

RT and accuracy. We have provided three separate methods of estimation to data to 

ensure that the LBA is accessible to users with a range of different levels of 

programming and mathematical ability. The Excel spreadsheet is straightforward to 
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apply to new data which is fairly similar to that from our example data (i.e. a one 

within-subjects factor). Given R’s flexibility and computational power, our R code can 

be extended to fit accuracy and RT data from almost any experimental set up. However, 

this requires some programming knowledge and changes to not only the ‘fit-example.r’ 

script, but also the ‘pq-lba.r’ code. We included the WinBUGS implementation of the 

LBA because, as Vandekerckhove et al. (submitted) argue, it offers a highly flexible 

framework for model fitting which is accessible to someone with relatively little 

computing background. One can adjust which parameters vary between conditions, 

regardless of the number of different conditions or variables in the simple way we 

previously discussed. We direct the reader interested in possible hierarchical extensions 

of the LBA, or diffusion model, to Vandekerckhove et al.’s discussion.

The intent of this article was to provide multiple ways to apply the LBA to data, 

not to compare these methods. As shown in Table 1, all methods recovered parameters 

quite accurately when applied to data with 100 or more observations per condition. The 

WinBUGS method provided parameter estimates which were generally the closest 

match those used to produce the data. However, the WinBUGS method took, by far, the 

longest (around 4 hours, with the R and Excel methods taking around 1 minute). The 

QMPE method used in the R code is more resilient to smaller sample sizes and outlying 

data points than the maximum likelihood method used in the Excel code and the 

multiple choice R code (Heathcote, Brown & Mewhort, 2002). In the Bayesian 

framework hierarchical methods, that provide parameter estimates at the population 

rather than individual participant level, are an effective way of dealing with small 

samples per participant when data from a large number of participants is available. 
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Appendix: Setting up WinBUGS

WinBUGS can be obtained from http://www.mrc-bsu.cam.ac.uk/bugs/. To install 

WinBUGS you will first need to download the install file (WinBUGS14.exe); once 

downloaded run the executable and it will, by default, install WinBUGS to the program 

files folder. Note that the install directory may be different for operating systems other 

than Windows XP – the reader need only take note of their WinBUGS install directory 

and adjust any future folder references we make. Next, you are required to fill out a 

short registration form that will allow a registration key to be sent to the email address 

you provide. The email will contain the registration key and instructions on how to 

register WinBUGS. 

Although WinBUGS has a large number of pre-specified distributions for which it 

can conduct a Bayesian analysis, it does not have the appropriate probability density  

function (pdf) for the LBA. We have, therefore, provided the pdf for the LBA in the 

‘BugsLBA.zip’ folder. Making the LBA pdf accessible to WinBUGS necessitates the 

use of two additional pieces of software: the Black-box component Builder and the 

WinBUGS Development Interface (WBDev). Instructions for their installation are as 

follows

1. Extract the lba.odc and Distributions.odc files from the BugsLBA.zip folder. 

2. Download the WinBUGS Development Interface (WBDev) from 

http://www.winbugs-development.org.uk/. From the home page navigate to the 

WinBUGS Development Interface page and download the software. The 

contents of the zip file should be unpacked into the WinBUGS directory. Open 

the .txt (wbdev_01_09_04.txt at the time of writing) file that you just extracted 

and follow the instructions contained in the file to install the WBDev software. 

112

http://www.winbugs-development.org.uk/
http://www.mrc-bsu.cam.ac.uk/bugs/


3. Download the BlackBox Component Builder from http://www.oberon.ch/blackbox.html. In the current paper we use version 1.5. Once 

downloaded, run the SetupBlackBox15.exe file which will install the BlackBox 

Component Builder 1.5. This will add a new folder to C:\Program Files called 

BlackBox Component Builder 1.5. 

Once you have all the programs necessary the next step is to compile the LBA pdf 

into WinBUGS via Black-box. After completion of the steps below you will be able to 

use WinBUGS to fit the LBA to data. 

1. Open the WinBUGS directory and copy the entire contents of the WinBUGS 

folder and paste them into the newly created BlackBox directory (C:\Program Files\

BlackBox Component Builder 1.5\ by default in Windows XP); choose yes to all the 

“replace existing file” requests. 

2. Now copy the lba.odc file to the C:\Program Files\BlackBox Component Builder 

1.5\WBDev\Mod directory. 

3. Open the BlackBox Component Builder program; this should now closely 

resemble the usual WinBUGS environment. Use File > Open to open the lba.odc 

file. Use Ctrl+K to compile the lba.odc file. An “ok” message should appear in the 

bottom left corner. 

4. Lastly, put the Distributions.odc into the C:\Program Files\BlackBox Component 

Builder 1.5\WBDev\Rsrc\ directory. Close down any still running BlackBox or 

WinBUGS windows. The next time BlackBox is run then the LBA pdf should be 

ready to use.

For more information on the procedure outlined above as well as the use of diffusion 

models in WinBUGS see Vandekerckhove, Tuerlinckx and Lee (submitted).
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Abstract

It has been argued that performance in the lexical decision task (LDT) does not 

provide a direct measure of lexical access because of the effect of decision processes. 

We re-examine LDT data and fits of the diffusion decision model reported by Ratcliff, 

Gomez and McKoon (2004) and show that they assumed too little role for non-

decision processes in explaining the word frequency effect. Our analysis supports an 

effect of frequency on decision and non-decision time.  
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Reading is one of the most remarkable abilities achieved by the human mind. 

One of the key aspects enabling reading is the ability to recognize a string of characters 

as being a word, a process called “lexical decision”. The lexical decision task (LDT) is a 

paradigm for studying word identification in which participants are presented with a 

string of letters and they must quickly decide whether or not the letters form a word. If 

the letters presented do make a word, then the time taken to make a ‘word’ response is 

thought to give information about how long it took to retrieve the word from their 

database of words, a process referred to as lexical access. 

The word frequency effect is one of the most robust findings from the LDT 

paradigm: words used less frequently in natural language take longer to indentify than 

higher frequency words. Historically, the word frequency effect has been reported as a 

difference in mean reaction time (RT) for correct responses between low and high 

frequency words. Mean RT from high and low frequency words usually differs by 

around 60-80ms. However, RT in the LDT is quite variable, typically having a standard 

deviation of greater than 100ms. Some of this variability is because of differences 

between words within a frequency class, but variability also occurs between the same 

word on different occasions. Variability in RT is also positively skewed, with a longer 

right (slow) than left (fast) tail in RT distribution, and the length of the right tail has 

been found to vary systematically in LDT experiments. Hence, researchers have begun 

to investigate differences in the entire RT distribution between high and low frequency 

words, rather than just the mean RT (Andrews & Heathcote, 2001; Balota & Spieler, 

1999; Plourde & Besner, 1997). More recently, there have been lexical theories 

proposed that account for effects on all aspects of RT distribution (Ratcliff, Gomez and 

McKoon, 2004; Yap, Balota, Cortese & Watson, 2006).  
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RT distributions have been shown to be well characterized by the ex-Gaussian 

distribution (Luce, 1986). The ex-Gaussian distribution is produced by convolving (i.e., 

adding samples from) the Gaussian and Exponential distributions. It has three 

parameters, the mean (µ) and standard deviation (σ) of the Gaussian component and the 

mean of the exponential component (τ). These parameters give information about the 

shape of the RT distribution. In particular, the µ parameter is affected by the speed of 

the fastest responses made by participants. Similarly, the τ parameter is affected by the 

length of the right tail of the RT distribution. 

Differences in parameter estimates from fits of the ex-Gaussian to high and low 

frequency RT distributions indicate that there are changes in the very fastest and slowest 

responses made by participants. Changes in µ of approximately 20-30ms have been 

reported (Andrews & Heathcote, 2001; Balota & Spieler, 1999; Plourde & Besner, 

1997). These changes indicate that the entire RT distribution shifts to be slower for less 

frequent words, independently of any changes in the shape of the distribution. In the 

same applications of the ex-Gaussian, changes in τ of approximately 35-45ms were 

observed, suggesting that the right tail is longer when the words to be identified are less 

frequent. 

Balota and Chumbly (1984) argued that the data from LDT tasks come from a 

combination of the lexical process and the decision process. Ratcliff et al. (2004) 

furthered this line by arguing information about lexical access can only be obtained 

from RT after accounting for the decision process. In other words, even studying the full 

range of behavioral data in the LDT (i.e., accuracy and RT distributions for correct and 

error responses) does not by itself provide clear information about lexical access. To 

address this issue they fit a model of the decision process, the diffusion model, to their 
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LDT data and used estimates of its parameters, and the parameters of a simple 

characterization of non-decision processes, to examine lexical access. When Yap et al. 

(2006) compared the diffusion account with a hybrid two-stage model of the LDT based 

on Balota and Chumbly’s work, they concluded in favor of the diffusion model. 

The diffusion model account of RT is composed of two parts – a decision time 

and a non-decision time. The account of LDT starts by assuming that a stimulus is 

perceived and encoded. This is followed by lexical access, which gives an estimate of 

how much evidence the stimulus provides for each response (word and non-word in an 

LDT). This evidence determines the rate at which information is accumulated, called 

drift rate, and drives the decision part of the diffusion model. The time taken for the 

initial perceptual, encoding and lexical access processes, plus the time to execute the 

motor response after the decision process is completed, makes up the non-decision time. 

The non-decision time, Ter in the diffusion model determines the smallest possible RT 

and, therefore, changes in Ter shift the entire RT distribution. The ex-Gaussian evidence 

reviewed above might have suggested that the word frequency effect would, in part, be 

explained by differences in Ter for high and low frequency words. However, when 

Ratcliff et al. (2004) applied the diffusion model to data from nine LDT experiments 

they concluded that only drift rate differed between high and low frequency words. In 

other words, word frequency effects in the LDT were simply due to how ‘wordlike’ the 

string of letters was, and not caused by other aspects of the non-decision processing, 

such as the time required for lexical access. Ratcliff et al. claimed that the shift of the 

RT distribution due to word frequency is captured by the inclusion of trial-to-trial 

variability in Ter and not due to systematic differences in Ter determined by the frequency 

of the word being identified.  
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In the current paper we re-analyze Ratcliff et al.’s (2004) data and demonstrate 

that their fits of the diffusion model systematically fail to account for the word 

frequency effect on both fast and slow responses. We then show that the misfit is greatly 

reduced by allowing Ter to differ for words of different frequency. We finish by 

discussing the implications of our results and possible extensions. First, however, we 

begin by describing the diffusion model. 

The Diffusion Model

The diffusion model with trial-to-trial variability in parameters is the most 

successful model of choice and reaction time for simple decisions between two 

alternatives (Ratcliff, 1978) and has been applied repeatedly to LDT data since Ratcliff 

et al.’s (2004) initial work (Gomez, Ratcliff & Perea, 2007; Ratcliff, Perea, Colangelo, 

& Buchanan, 2004; Wagenmakers, Ratcliff, Gomez & McKoon, 2008). The diffusion 

model assumes that participants sample evidence from the stimulus continuously, and 

this evidence stream updates an evidence total, say x, illustrated as a function of time by 

the irregular line in Figure 1. The accumulator begins the decision process in some 

intermediate state, say x=z. Evidence that favors the response “word” increases the 

value of x, and evidence that favors the other response (“non-word”) decreases the value 

of x. The evidence accumulation process continues until sufficient evidence favors one 

response over the other, causing the total to reach one of its two boundaries (the 

horizontal lines at x=0 and x=a in Figure 1). The choice made by the model depends on 

which boundary is reached (a for a “word” response or 0 for a “non-word” response) 

and decision time equals the accumulation time.

Depending on the stimulus, evidence tends to accumulate more towards one 

boundary or another, and the average rate of this accumulation is called the “drift rate”, 

119



which we will label v. Larger positive or negative drift rates cause faster and more 

accurate responses as evidence heads towards the correct boundary at a faster rate. The 

evidence accumulation process also varies randomly from moment-to-moment during 

the accumulation process, and the amount of this variability is another parameter of the 

model, s. The diffusion model used in Ratcliff et al. (2004) also includes three extra 

variability parameters, the distribution of drift rates is assumed to vary from trial-to-trial 

according to a normal distribution with mean v and standard deviation η. Start point is 

also assumed to vary from trial-to-trial according to a uniform distribution with centre z 

and range sz. Finally, non-decision time is assumed to vary between trials according to a 

uniform distribution with centre Ter and range sT. Critically, non-decision variability 

enables the diffusion model to better account for shifts in RT distribution between 

conditions that differ only in drift rate. When there is no non-decision variability a 

change in drift rate almost exclusively slows RT by lengthening the right tail of the 

distribution, with only a small effect on the fastest RTs. When non-decision variability is 

added the effect of a drift rate change on fast RTs is increased sufficiently so that 

Ratcliff et al. (2004) were satisfied with an account of the word frequency effect in 

terms of a pure selective influence on drift rate.  

Figure 1 A graphical representation of a single diffusion model decision in an LDT task
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Ratcliff et al.’s (2004) LDT Data

Fits reported in the original paper 

Ratcliff et al.’s (2004) fits to all experiments were accomplished by allowing 

only drift rate to vary between word frequency conditions. This is common practice 

when applying the diffusion model. Differences in non-decision process parameters 

cannot be the sole account for word frequency effects, as these processes cannot 

influence error rates. However, although less parsimonious, there is no reason why non-

decision processes might not be affected by word frequency in addition to drift rates. 

Indeed, Ratcliff et al.’s (2004) application of the diffusion model to the LDT was one of 

the first occasions on which non-decision variability was used, with most earlier 

applications assuming a constant non-decision time (e.g., Ratcliff, 1978).   

When we looked closely at Ratcliff et al.’s (2004) published fits of the diffusion 

model to their LDT data averaged over participants, we found a systematic pattern of 

misfit that was highly consistent across all of the nine experiments which they report. In 

particular, despite the inclusion of between-trial variability in Ter, the diffusion model 

consistently under-predicted the magnitude of the word frequency effect on the .1 

quantile results for correct responses reported by Ratcliff et al.. The .1 quantile 

characterizes the fastest responses from the RT distribution (i.e., it is the RT below 

which the fastest 10% of responses occur). Changes in the .1 quantile indicate a shift in 

the entire RT distribution. Averaging over their nine experiments, the .1 quantile 

estimate for high frequency words was 27ms and 33ms faster relative to low and very 

low frequency words respectively, whereas for the model it was only 16ms and 22ms 

faster. Although the under-prediction is relatively small (11 ms on average), it is highly 

consistent, occurring in every one of the 19 fits reported in their Tables 3, 7 and 9 - a 
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highly significant result using a binomial test (p<.001 for both low and very low 

frequency words). In contrast to results for the fast .1 quantile, the diffusion model 

consistently over-predicted the word frequency effect for the slow .9 quantile, for nine 

of ten fits comparing high and low frequency words (p<.001) and seven of nine fits 

comparing high and very low frequency words (p<.02). 

Figure 2 is a graphical summary of these analyses of data and model fits for high 

and low frequency words averaged over experiments from Ratcliff et al. (2004). Though 

it was excluded for brevity, the plot of the difference between high and very low 

frequency words looks almost identical. The vertical axis shows the difference in RT 

between low and high frequency words. Note that the positive value of this difference 

means that participants were slower to respond to low frequency words – the standard 

word frequency effect. The horizontal axis represents the quantile values of the RT 

distribution. The average model predictions (shown by the solid line) for the.1 quantile 

fall below the observed data averaged across all experiments. Note also that the opposite 

is true for the .9 quantile – the average model predictions sit higher than the data in both 

plots. The systematic and opposite misfit for fast and slow responses resulted in over 

prediction of the effect of word frequency on variability (i.e., a much larger range 

between the 10% and 90% quantiles than observed in data).  
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Figure 2: Word frequency effect quantile function based on responses to high frequency 
(HF) and low frequency (LF) words in Ratcliff et al.’s (2004) experiments 1-9. Average 
model fits across experiments and conditions are plot as lines, and data as symbols. 
Standard error bars indicate variability across experiments and condition

The diffusion model has clearly raised the bar for accounts of LDT performance 

by simultaneously fitting accuracy and RT distribution for both correct and error 

responses. Although we agree that the diffusion model provides an impressively 

comprehensive account of many aspects of performance in the LDT, the systematic 

misfit of the word frequency quantile functions indicates that there may be reason to re-

examine the assumptions made by Ratcliff et al. (2004) in their application of the 

diffusion model. 

The diffusion model appears to have misfit Ratcliff et al.’s (2004) data largely 

because the assumptions underlying the mapping of the diffusion model to the LDT task 

are too simple. Although simplicity is a virtue in quantitative modeling, identifying 

word frequency effects entirely with drift rate may represent an over-application of 

Occam’s razor. Most models of reading assume that lexical access is accomplished more 

quickly as the frequency of a word increases (see Andrews & Heathcote, 2001, for a 
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discussion). In the diffusion model framework, this could be interpreted as a faster non-

decision time for high than low frequency words. Allowing for such a possibility might 

reduce the underestimation of the word frequency effect at the .1 quantile apparent in 

Figure 2. In other words, perhaps the diffusion model would provide a better account of 

the word frequency effect in LDT data if it were to also allow for changes in Ter for 

words of different frequency. We explore this possibility in the next section.

Exploring frequency effects on non-decision time

We fit four different versions of the diffusion model to data averaged over 

participants from Experiments 3, 4 and 5 from Ratcliff et al. (2004). All experiments 

were of nearly identical procedure, with differences being in the type of words used: 

Experiment 3 used high frequency, low frequency and pseudo-words, Experiment 4 was 

identical but used random letter strings instead of pseudo-words, and Experiment 5 was 

the same as Experiment 3 but also included very-low frequency words. Our re-analyses 

was limited to these three experiments because Ratcliff et al. did not publish critical 

information for fitting (e.g., quantiles for error RT) for the remaining experiments. 

The four versions of the diffusion models differ according to how non-decision time, Ter, 

varied. There were two ways in which Ter was allowed to vary – randomly between trials 

(cf. Ratcliff et al., 2004) or systematically between word frequency conditions. 

Between-trial variation was uniformly distributed with mean Ter and range sT. 

Between-condition variation in Ter, like between-condition variation in drift rate, meant 

that each of the word conditions had its own Ter value. The between-trial variability in 

Ter requires one parameter, sT, whereas between-condition variability in Ter requires the 

estimation of an additional k-1 parameters, where k is the number of word frequency 

conditions in the experiment being fit. The four different models were factorial 
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combinations of these two methods: 1) neither between-trial nor between-conditions 

variability in Ter, 2) only between-trial variability in Ter, 3) only between-conditions 

variability in Ter, and 4) both between-trial and between-conditions variability in Ter. 

The data to be fit were accuracy and quantile values for correct and error responses 

averaged over participants from each experiment. We fit the diffusion model using an 

adaptation of Voss and Voss’s (2008) diffusion model code to use quantile maximum 

likelihood estimation (Heathcote, Brown & Mewhort, 2002). The Bayesian information 

criterion (BIC) was calculated using the BIC statistic for N observations grouped into 

bins:

BIC = -2( ∑i Npi ln(πi)) + M ln(N)

where pi is the proportion of observations in the ith bin, and πi is the proportion of 

observations in the ith bin as predicted by the model. M is the number of parameters of 

the model used to generate predictions. The BIC is composed of two parts, the first is a 

measure of misfit, and a second part, Mln(N), penalizes a model for its complexity as 

indicated by the number of estimated parameters. When comparing two models, the 

model with the smaller BIC is thought to have provided a better fit after complexity has 

been taken into account. Best fitting parameter estimates for each of the four models to 

all three experiments and their respective BIC values are given in Table 1. 

Despite the complexity of the analysis, the pattern of results was relatively 

simple. Adding between-trial variability in Ter always improved the BIC value, and so 

too did adding between-condition variability in Ter. In all three experiments the model 

with both between-trial and between-condition variability in Ter had the lowest BIC. 

This implies that the improvement in fit due to the extra free parameters outweighed the 

penalty for added complexity. The next best fitting model in two out of three 
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experiments was the model used to originally fit the data in Ratcliff et al. (2004) – the 

model with between-trial variability in Ter. In Experiment 5 not the model without 

between-trail variability in Ter, but with between-condition variability in Ter achieved the 

second best fit. 

Table 1: Parameter estimates from fits of four different versions of the diffusion model 
to Experiments 3-5. M1 was the model with no variability in Ter, M2 had variability 
between-trials, M3 had variability between-conditions and M4 had both. In all models 
starting point, z, was set at a/2. 

Model a sz η vh vl vo vv st Ter
Ter

BIC
HF LF O VLF

Exp3

M1 .128 .059 .037 .348 .176 -.226 .404 91887 

M2 .122 .069 .108 .446 .219 -.282 .17 .444 91126

M3 .127 .065 .052 .335 .188 -.243 .396 .421 .422 91449

M4 .122 .076 .113 .412 .226 -.301 .16 .428 .451 .461 90843

Exp4

M1 .133 .08 .089 .367 .361 -.302 .378 98571

M2 .126 .075 .101 .381 .361 -.366 .11 .39 98415

M3 .132 .081 .093 .37 .319 -.358 .379 .391 .375 98453

M4 .127 .078 .011 .391 .334 -.374 .105 .392 .404 .387 98320

Exp5

M1 .147 .069 .069 .354 .214 -.259 .128 .409 89190

M2 .144 .075 .01 .394 .234 -.253 .141 .139 .431 89000

M3 .144 .074 .074 .336 .243 -.217 .132 .402 .435 .429 .425 88693

M4 .148 .093 .124 .404 .257 -.296 .163 .125 .422 .451 .461 .454 88546

The model with neither between-trial nor between-condition variability in Ter 

consistently performed the worst of the four models. Inspection of the fits revealed that, 

as expected, this model predicted almost no change in the .1 quantile due to changes in 

word frequency. Because of this it was also unable to capture other aspects of the RT 

distribution. Hence, we do not consider the model without variability in Ter any further. 

Although, for brevity, we do not show the complete fits of the model to quantiles for 

correct and error responses for all word frequency conditions, these graphs clearly agree 

with our conclusions based on BIC values (they may be obtained by emailing the 

authors).

Our reason for investigating between-condition variability in Ter was based on 

the systematic misfit of the word frequency effect. Figure 3 shows that there is an 
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improvement in the account of the word frequency effect when between-condition 

variability in Ter is added to the diffusion model. The plots in Figure 3 are like those in 

Figure 2, but are from individual experiments rather than averaged across all nine 

experiments in Ratcliff et al. (2004). Each of the three plots also now contains three sets 

of model predictions (represented by solid lines) rather than one. The filled black dots 

represent the difference between RTs from high and low frequency words at each of 

the .1, .3, .5, .7 and .9 quantiles from the data. For all experiments we again observe that 

the difference between low and high frequency words is positive at all quantile values. 

This suggests that the RT distribution for low frequency words is shifted above that of 

high frequency words. 

Figure 3: Word frequency effect quantile function based on responses to high frequency 
(HF) and low frequency (LF) words in Ratcliff et al.’s (2004) experiments 3-5. Data are 
shown as filled black dots and model predictions from a diffusion model with between-
trial variability in Ter, a model with between-condition variability in Ter and a model with 
both forms of variability are shown by lines connected with a plus symbol (+), a cross 
(x), and a triangle, respectively.

The models with between-condition variability in Ter both provide a good 
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account of the word frequency effect, while the model with only within-condition 

variability in Ter still systematically fails to capture the effect. The lines connected by 

plus signs (+) are the predictions of the diffusion model with only between-trial (within-

condition) variability in Ter (i.e. the same as the model used in Figure 2 and Ratcliff et 

al., 2004). Note the systematic under-prediction of the .1 quantile in all experiments, 

and the over-prediction of the .9 quantile in Experiments 3 and 5. The predictions of the 

models with between-condition variability in Ter or both forms of variability in Ter 

(representing in Figure 3 by lines joined by crosses and triangles, respectively) provide 

a much better account of the word frequency effect. Indeed, the two models produce an 

almost identical account of the word frequency effect in Experiments 4 and 5. In these 

experiments both models provide an excellent account of the difference between RTs 

from high and low frequency conditions at all quantiles except for the .9 quantile in 

Experiment 5. In Experiment 3 the model with both types of variability provides and 

excellent account of all but the .9 quantile, whereas the two other models also provide a 

less accurate account at three of the four remaining quantiles. Though we do not show it 

here due to space restrictions, a plot like Figure 3, but comparing high and very low 

frequency words from Experiment 5, showed the same pattern of results (once again 

this plot may be obtained by emailing the authors). 

Discussion

We were prompted to fit a diffusion model which allowed mean non-decision 

time (Ter) to vary as a function of word frequency because of a) results from previous 

analyses of RT distribution using the Ex-Gaussian distribution, b) systematic misfit of 

the word frequency effect by a diffusion model which allows only drift rate to vary 

between frequency conditions, and c) the fact that a shift is plausible according as most 
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reading models, which assume that word frequency affects the time taken for lexical 

access. A diffusion model with both between-condition and between-trial variability 

provided a better fit to the data, even after accounting for this models increased 

parametric complexity. In particular, the model with both forms of variability provided 

an improved account of the word frequency effect compared to Ratcliff et al.’s (2004) 

original model with only between-trial variability in Ter,  as it did not systematically 

under-predict the shift in the RT distribution between high and low frequency words. 

A diffusion model with between-condition variability in Ter, but without 

between-trial variability in Ter, was also able to account for the shift effect. However, in 

terms of overall fit, this model did worse in two of three experiments than the Ratcliff et 

al. (2004) original model. A diffusion model with no variability in Ter either between-

conditions or between-trials fit had a poor overall fit and account of the word frequency 

effect. These results together suggest that the addition of between-condition variability 

in Ter greatly improves the account of the shift in RT distribution due to changes in word 

frequency (see also Ratcliff & Tuerlinckx, 2002). 

Even the diffusion model with both forms of variability in Ter still over-predicted 

the slowest differences between high and low frequency words in two of the three 

experiments we examined. This suggests that our current account of the word frequency 

effect and the LDT may not be complete. Indeed, given the intricacies of the lexicon, an 

even more complex model of the effects of frequency on non-decision time seems quite 

plausible and may account for these failings. However, it has been argued that the .9 

quantile estimate is much more variable than the other quantile estimates, and most 

subject to the influence of slow outlier responses, so this misfit is not necessarily 

indicative of a failed model. An alternative possibility is raised by Donkin, Brown and 
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Heathcote’s (submitted) recent demonstration that the moment-to-moment variability 

parameter has been, without justification, over-constrained in all previous applications 

of the diffusion model. When we let this parameter vary across frequency conditions 

BIC improved and excellent fits were obtained to all quantiles of the word frequency 

effect, and all other aspects of the data. However, due to space restrictions, details 

concerning these fits will be reported elsewhere. 
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Abstract

Theories of choice response time provide insight into the psychological underpinnings 

of simple decisions. Evidence accumulation (or sequential sampling) models are the 

most successful theories of choice response time. These models all have the same 

‘scaling’ property– that a subset of their parameters can be multiplied by the same 

amount without changing their predictions. This property means that a single parameter 

must be fixed to allow estimation of the remaining parameters. We show that the 

traditional solution to this problem has over-constrained these models, unnecessarily 

restricting their ability to account for data and making implicit, and therefore 

unexamined, psychological assumptions. We show that versions of these models which 

address the scaling problem in a minimal way can provide a better description of data 

than their over-constrained counterparts, even when increased model complexity is 

taken into account. 
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Many psychological experiments involve a choice between two alternatives. 

Despite their apparent simplicity, there are many complicated empirical regularities 

associated with the speed and accuracy of such choices. Response time (RT) 

distributions take on characteristic shapes, which differ systematically depending on 

whether the associated response is correct or incorrect and depending on any number of 

experimental manipulations of stimulus properties or of instructions to the participants. 

A range of theories have been proposed to account for both choice probability and 

response time when making simple decisions (for reviews see Luce, 1986; Ratcliff & 

Smith, 2004). Over the past 40 years, evidence accumulation (or “sequential sampling”) 

models have dominated the debate about the cognitive processes underlying simple 

decisions (e.g., Busemeyer & Townsend, 1993; Ratcliff, 1978, Ratcliff & Smith, 2004; 

Smith, 1995; Stone, 1960; Usher & McClelland, 2001; Van Zandt, Colonius, & Proctor, 

2000). 

More recently, evidence accumulation models have been applied more widely, 

for example, as general tools to measure cognition in the manner of psychometrics 

(Schmiedek, Oberauer, Wilhelm, Suss & Wittmann, 2007; Wagenmakers, van der Maas 

& Grasman, 2007; Vandekerckhove, Tuerlinckx, & Lee; submitted), and as models for 

the neurophysiology of simple decisions (e.g.: Forstmann, Dutilh, Brown, Neumann, 

von Cramon, Ridderinkhof, & Wagenmakers, 2008; Ho, Brown, & Serences, 2009; 

Smith & Ratcliff, 2004). In light of this growing influence it is especially important that 

users of these models are not misled by implicit - and hence unexamined - assumptions. 

Evidence accumulation models all share a basic framework wherein, when 

making a decision, people repeatedly sample evidence from the stimulus. This evidence 

is accumulated until a threshold amount is reached, which triggers a decision response. 
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These models naturally predict the response made (depending on which response has 

accumulated the most evidence) and the latency of the response (depending on how 

long the evidence took to accumulate). We illustrate these models using the example of 

a lexical decision task, where a participant must decide whether a string of letters is a 

valid word (e.g. “DOG”) or not (e.g. “DXG”). The participant samples information 

from the stimulus repeatedly, and finds some evidence that suggests that the stimulus is 

a word and other evidence to suggest that the stimulus is not a word. The participant 

accrues this information, waiting until there is enough evidence for one of the two 

options before responding. Their choice corresponds to the response with the most 

evidence, and the time taken for this evidence to be accumulated is the response latency.

Over the past four or five decades, dozens of evidence accumulation models 

have been proposed, and all of them share a mathematical “scaling property”: one can 

multiply a subset of their parameters by an arbitrary amount, without changing any of 

the model’s predictions. To avoid complications arising from the scaling property, just 

one parameter of the model must be constrained arbitrarily. We show that the 

conventional approaches – which have been universally applied to solve the scaling 

problem – have actually over-constrained the models by fixing more than one 

parameter. This over-constraint has been largely unrecognized by the field, and so it is 

equivalent to making a tacit, untested, psychological assumption. Further, we show that 

this tacit assumption can sometimes have important consequences: when the scaling 

problem is solved in a minimal way, the models can sometimes provide better account 

for data. 

Overview of the models

There are two major classes of evidence accumulation models: single 
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accumulator models (Busemeyer & Townsend, 1993; Ratcliff, 1978; Ratcliff & Rouder, 

1998; Ratcliff & Tuerlinckx, 2002; Smith, 1995; Stone, 1960) and models that have one 

accumulator for each possible response (Brown & Heathcote, 2005, 2008; Smith & Van 

Zandt, 2000; Smith & Vickers, 1988; Townsend & Ashby, 1983; Usher & McClelland, 

2001; Van Zandt, Colonius & Proctor, 2000; Vickers, 1970). The customary method for 

solving the scaling problem differs between the two classes of models, even though the 

principle is the same. To simplify our discussion we choose a specific model from each 

class: the single accumulator diffusion model (Ratcliff & Tuerlinckx, 2002) and the 

multiple accumulator linear ballistic model (LBA; Brown & Heathcote, 2008). We have 

chosen these two models largely for convenience, as both have easy-to-implement 

computer code that is freely available (see Donkin, Averell, Brown & Heathcote, in 

press, and Voss & Voss, 2007). The general point that we make, however, applies to all 

evidence accumulation models. 

Continuing the lexical decision example, the diffusion model assumes that 

participants sample evidence from the stimulus continuously, and this evidence stream 

updates an evidence total, say x, illustrated as a function of time by the irregular line in 

Figure 1. The accumulator begins the decision process in some intermediate state, say 

x=z. Evidence that favors the response “word” decreases the value of x, and evidence 

that favors the other response (“non-word”) increases the value of x. The evidence 

accumulation process continues until sufficient evidence favors one response over the 

other, causing the total (x) to reach one of its two boundaries (the horizontal lines at x=0 

and x=a in Figure 1). The choice made by the model depends on which boundary is 

reached (a for a “non-word” response or 0 for a “word” response) and response time 

equals the accumulation time plus a constant, Ter, that represents the time taken by non-
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decision processes, such as encoding the stimulus and producing the response.

Figure 1 Graphical representations of a single decision made by the diffusion model and 
the LBA model. 

Depending on the stimulus, evidence tends to accumulate more towards one 

boundary or another, and the average rate of this accumulation is called the “drift rate”, 

which we will label v. The evidence accumulation process also varies randomly from 

moment-to-moment during the accumulation process, and the amount of this variability 

is another parameter of the model, s. Recent applications of the diffusion model include 

three extra parameters, but these are not important for our purposes, so we delay their 

introduction until later. When experimental conditions differ only in stimulus 

characteristics that vary randomly from trial to trial, all parameters except the drift rate 

are conventionally assumed constant over conditions (Ratcliff, Gomez & McKoon, 

2004).

The LBA is a multiple accumulator model, meaning that it assigns a separate 

evidence accumulator to each possible response: for example, in lexical decision, one 

accumulator gathers evidence in favor of the response “word” and the other gathers 

138



evidence for the “non-word” response, as illustrated in Figure 1. The activity level in 

each accumulator begins at a value that is randomly sampled (separately for each 

accumulator) from the interval [0,A]. Evidence accumulation is noiseless (“ballistic”) 

and linear with a slope that we again call the “drift rate”, v. When the evidence 

accumulated for either response reaches a threshold, b, a response is made. Like the 

diffusion model, the LBA assumes that non-decision processing takes fixed time, Ter. 

The drift rates are assumed to vary from trial to trial according to normal distributions 

with means vW for the “word” accumulator and vNW for the “non word” accumulator, and 

a common standard deviation, s. 

Scaling Properties

Consider just one of the evidence accumulators from the LBA. The accumulator 

begins a trial with some activity, say x0, between 0 and A, and increases at a rate of v 

units per second (v is the drift rate for this accumulator). Evidence accumulation ends 

when the threshold b is reached, which will take (b-x0)/v seconds. If all of these model 

parameters were multiplied by a common amount the predicted response time would 

remain unchanged; for example, if the parameters were doubled then the evidence 

accumulation process would travel twice as quickly, but would also have to travel twice 

as far. This scaling property is true of all evidence accumulation models – all parameters 

that affect evidence accumulation can be multiplied by any fixed amount without 

altering the model’s predictions. 

The scaling property makes it impossible to estimate unique model parameters 

from data unless the value of one parameter is fixed arbitrarily. In single accumulator 

models, including Ratcliff’s diffusion, this has always been done by fixing the 

variability of the diffusion process at either s=0.1 or s=1 (e.g., Ratcliff, 1978; Ratcliff & 
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Rouder, 1998; Ratcliff & Tuerlincx, 2002; Smith & Ratcliff, 2004; Van Zandt, Colonius 

& Proctor, 2000; Voss, Rothermund, & Voss, 2004). In fact, the diffusion coefficient is 

usually referred to as the “scaling parameter” of the model, even though any other 

parameter could equally well be fixed to avoid scaling problems. 

For the LBA and other multiple accumulator models, problems due to the 

scaling property have been avoided by fixing the sum of the drift rates for the two 

accumulators to a constant (Brown & Heathcote, 2005, 2008; Forstmann, et al., 2008; 

Ho, et al., 2009; Ratcliff & Smith, 2004; Smith & Van Zandt, 2000; Townsend & Ashby, 

1983; Usher & McClelland, 2001). For example, in the word vs. non word model above, 

one might fix vW+vNW=1. Mathematically speaking, any other parameter constraint 

would do just as well to solve the scaling problem, for example the boundary 

separation, or one of the drift rates, could be fixed. It is simply a matter of convention 

that the field has settled on the sum-of-drift-rates constraint for multiple accumulator 

models, and the diffusion noise constraint for single accumulator models.

The scaling properties just described are simple and well-understood. However, 

the situation is complicated in practice because evidence accumulation models are 

almost never used to analyze just one experimental condition in isolation. Instead, data 

are collected from multiple experimental conditions, which are analyzed together2. This 

allows some parameters to be fixed across experimental conditions, depending on what 

psychological assumptions one is willing to make. For example, when experimental 

conditions differing only in stimulus properties are randomly ordered from trial to trial, 

parameters that are assumed to be under the strategic control of the participant (such as 

boundary separation) are often fixed. This is justified by the notion that such parameters 

2  Applications of Wagenmakers et al.’s (2007) EZ estimation technique, such as by Schmiedek et al. 
(2007), are an exception.
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take time and effort to change, and hence that such changes are unlikely to occur 

between stimulus onset and the response (Ratcliff, 1978). 

When parameters are fixed across conditions, changes in parameters for one 

condition naturally alter the predictions for other conditions. So, when multiple 

conditions are analyzed simultaneously, the scaling properties of the models can be 

constrained by fixing a single parameter in only one of the conditions. For example, 

suppose one conducts an experiment with five different levels of difficulty defined by 

different stimuli. In this design, scaling problems are avoided if a single parameter is 

constrained in only one of the five conditions. If Ratcliff’s diffusion model is used, one 

can set s=1 in just one of the five conditions, or in the LBA, one could set the sum of 

the drift rates equal to one in just one of the five conditions. 

However, these are not the constraints that have been used in practice. In all of 

the studies that we have reviewed (including our own), researchers have constrained 

“scaling parameters” independently in all conditions. To continue our example, they 

have either fixed s for all five conditions (in single accumulator models, like the 

diffusion) or fixed the sum of the drift rates for all five conditions (in multiple 

accumulator models). Avoiding estimation problems due to scaling properties requires 

fixing just one parameter value, but researchers have always fixed one parameter value 

per experimental condition. 

These so-called ‘scaling parameters’ (i.e. s or the sum of drift rates) have also 

come to be treated quite differently from the other model parameters, as “fixed, not 

free” (p. 440, Ratcliff & Tuerlinckx, 2002). Mathematically, dealing with scaling 

parameters entails two independent decisions – firstly, one model parameter is 

arbitrarily selected for constraint, and secondly that parameter can be (and always has 
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been) held to its fixed value across all experimental conditions. The first decision has no 

theoretical consequence, because constraints on different types of parameters are 

mathematically equivalent. The second decision can have theoretical consequence. 

Suppose, for example, that one had decided to fix the boundary separation parameter to 

solve the scaling problem. Keeping this parameter fixed across conditions that differ in 

instructions that emphasize the speed or accuracy of responses is clearly inappropriate. 

In practice, however, it seems that the second decision has automatically followed the 

first; that choosing a scaling parameter has pre-determined its role as fixed across 

experimental conditions. 

Our central message is that the parameter type chosen as a scaling parameter 

can vary across conditions while still satisfying the scaling constraint property. As we 

will now demonstrate, this can be important since using minimal constraints changes 

two things: the predictions and the psychological interpretations of the models. By re-

analyzing previously published data we show that allowing parameters previously 

treated in the conventional scaling manner to vary across conditions can have a 

substantial, and sometimes useful, effect. We show that when a minimal rather than 

conventional scaling solution is used, the resulting improvement in fit is sufficient to 

justify the extra parametric freedom, even when a very strict complexity penalty is 

employed. We then briefly address the psychological implications of our proposal. 

Re-analysis of Gould, Wolfgang and Smith’s (2007) data

Gould, Wolfgang and Smith (2007) investigated the effect of cueing and 

localization in a stimulus detection task. We focus on one of their cueing conditions, the 

one providing the greatest challenge for evidence accumulation models. Gould et al. 

manipulated the difficulty of stimulus detection by varying contrast over five levels. 
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This resulted in ten different RT distributions – one for correct responses and one for 

incorrect responses from each of the five contrast levels. Figure 2 summarizes these ten 

distributions using quantile probability (QP) plots, with data (averaged across subjects) 

represented as filled circles connected by solid lines. QP plots have proven very 

important in discriminating between models of choice RT (Brown & Heathcote, 2008; 

Ratcliff & Rouder, 1998; Ratcliff & Smith, 2004). The x-axis measures response 

probability, and the y-axis shows the latencies associated with five quantiles of the RT 

distributions (10%, 30%, 50% - the median, 70% and 90%). 

An example may make this clearer; consider just the data from the very easiest 

stimulus condition. Average response accuracy for this condition was 97.3%, so the 

quantile estimates from the distribution of correct responses are plotted as five filled 

circles vertically above x=.973, and the quantile estimates from the distribution of 

incorrect responses are plotted above x=.027 (i.e., 1-.973). The 10% quantile estimate 

for the correct RT distribution was 409msec (i.e., 10% of correct responses were faster 

than 409msec), so the first filled circle above x=.973 is at y=409. The procedure is 

repeated for the remaining quantile estimates for both the correct and incorrect 

distributions. The resulting plot allows one to assess how the RT distribution changes 

with response accuracy and between correct and incorrect responses. The solid lines in 

Figure 2 join each of the quantiles across contrast values for correct and error responses. 
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Figure 2  Quantile probability plots for Gould et al.’s (2007) data and fits  (averaged 
across participants). The data are shown as filled circles joined by solid lines. In the left 
and  right  panels  the  dotted  lines  are  the  fits  of  the  diffusion  and  LBA models, 
respectively. 

As is typical, correct responses for difficult decisions were slower than easy 

decisions (as we move from the right to the center of the plots) at all five quantiles. 

Incorrect responses were slower still (on the left half of the plots) with the possible 

exception of errors in easiest condition (far left). What is unusual in these data is the 

amount of change in the fastest response times (the 10% quantile estimate). The 10% 

quantile estimate for correct responses was 87 ms slower in hardest condition relative to 

the easiest condition. Most previous studies have observed that the fastest decision 

times change by at most 30ms across the range of a QP plot (e.g., Ratcliff et al., 2004; 

Ratcliff & Smith, 2004). 

Model fits – Conventional scaling

Figure 2 shows fits of the diffusion and LBA models when employing the over-

constrained conventional solution to the scaling problem (i.e., fixing one parameter 

across all experimental conditions). To fit both models we followed the usual 
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convention of assuming that only drift rate varies between conditions, and that all other 

parameters were equal across all conditions. A constant non-decision time (Ter) assumes 

encoding and response production time does not vary across conditions. Constancy of 

the strategic parameters is justified because stimulus conditions varied randomly from 

trial to trial. We also assumed that responding was unbiased; for the diffusion model this 

means evidence accumulation begins half way between the bounds (z=a/2), and that 

response boundaries are equal in the LBA. 

The simple diffusion model described earlier would fit these data with five free 

parameters. However, in practice the diffusion model uses another three free parameter 

types related to trial-to-trial variation: the starting point of the evidence accumulation 

process varies according to a uniform distribution on [z-sz, z+sz], the drift rate varies 

according to a normal distribution N(v,η), and non-decision time (Ter) varies according 

to a uniform distribution on [Ter-sT , Ter+sT]. These additions make a total of ten free 

parameters (Ter, sT, a, η, sz, v1, v2, v3, v4, v5), as they are assumed the same across 

conditions. The LBA fits also used ten free parameters for each participant (Ter, sT, A, b, 

s, v1, v2, v3, v4, v5). This is one more parameter than has previously been used in 

applications of the LBA, as non-decision time, Ter, is usually assumed fixed (i.e., sT=0). 

We allowed non-decision time to vary here for equivalence with the diffusion model 

(although sT was estimated at about zero for the LBA). The sum of average correct and 

incorrect drift rates in the LBA was set at 1 for all five stimulus contrast levels. The 

diffusion model was constrained by having the diffusion coefficient fixed at s=1 across 

all five conditions.

Parameters were estimated using the method of quantile maximum probabilities 

(Heathcote & Brown, 2004). Model predictions were evaluated using the LBA code 
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provided by Donkin et al. (in press) and the diffusion model code provided by Voss and 

Voss (2007). The Bayesian information criterion (BIC) was calculated at the best-fitting 

parameters for each participant: the BIC statistic for N observations grouped into bins 

is:

BIC = -2( ∑i Npi ln(πi)) + M ln(N)

where pi is the proportion of observations in the ith bin, and πi is the proportion of 

observations in the ith bin as predicted by the model. M is the number of parameters of 

the model used to generate predictions. The BIC is composed of two parts, the first is a 

measure of misfit, and a second part, M ln(N), penalizes a model for its complexity as 

indicated by the number of estimated parameters. When comparing two models, the 

model with the smaller BIC is considered to have provided a better fit to the data, after 

complexity has been taken into account. We use BIC because it imposes a larger 

complexity penalty than alternatives such as the Akaike Information Criterion (AIC), 

and so it provides a more stringent test of whether the models benefit from the extra 

parameter variation allowed by imposing minimal constraints to solve the scaling 

problem.

Table 1 Parameter estimates and BIC from fits to average data from Gould et al.’s 
(2007) cued+FID condition (D = diffusion model, L= LBA model)

Ter
a sT

a a ηb sz v1
b v2

b v3
b v4

b v5
b s2 s3 s4 s5 BIC

D
.352 .083 1.46 1.76 .000 5.17 4.01 2.61 1.12 0.37 - - - - 39406

.364 .099 1.26 1.59 .046 4.78 3.68 2.36 1.12 .378 1.01 .923 .843 .788 39305

Ter
a sT

a b sb A v1
b v2

b v3
b v4

b v5
b ∑v2

b ∑v3
b ∑v4

b ∑v5
b BIC

L
.144 .000 .356 .276 .047 .974 .881 .757 .621 .538 - - - - 39403

.168 .002 .287 .219 .082 .797 .720 .609 .475 .378 .923 .800 .692 .648 39166

Note: a indicates parameters whose units are in ‘seconds’. b have units ‘per second’, 
while other parameters have arbitrary units.

Parameter estimates and BIC values are shown in Table 1 (we focus on averaged 

data for brevity). As the right panel of Figure 2 shows, both models provided poor 
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accounts of the data – the diffusion under predicts the shift in RT distribution across 

conditions, while the LBA fails to capture the faster errors that occur in easy conditions. 

The conclusion we draw is that standard applications of both models fail to provide 

convincing accounts of these data.

Model Fits – Minimally Constrained

For the minimally constrained version of Ratcliff’s diffusion model, we fixed the 

diffusion coefficient in the highest contrast condition at s1=1 and freely estimated 

diffusion coefficients for the other four contrast conditions (s2, s3, s4, s5). For the 

minimally constrained version of the LBA, we fixed the sum of correct and error drift 

rates to be one in the easiest condition, and estimated this sum in the other four 

conditions (i.e. Σv2, Σv3, Σv4, Σv5). Table 1 reports the estimated parameters and the BIC 

values for the minimally constrained fits, shown in Figure 3. The quality of fit was 

greatly improved, with both models providing a much better account of the data than the 

conventionally constrained versions. 

BIC values were better in the minimally constrained versions of both models, 

suggesting that the improvement in fit outweighed the cost of adding four additional 

parameters. Using methods outlined by Wagenmakers and Farrell (2004), BIC values 

can be converted to model selection probabilities (see Raftery, 1995, for a discussion of 

conventions for interpreting such probabilities). The BIC improvement provided very 

strong evidence (p>.99, Raftery, 1995) favoring both minimally constrained models 

over their conventionally constrained counterparts. The improvement in the diffusion 

model seems to have come from predicting a larger shift in RT distribution across 

conditions and no longer predicting such extreme skewness for difficult decisions. The 

minimally constrained LBA was better able to accommodate the fast errors. As before, 
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estimated drift rates for both models decrease in a sensible manner with decreasing 

stimulus contrast (Table 1). For both models, the scaling parameter also decreased with 

decreasing stimulus contrast (the sum of the drift rates for the correct and incorrect 

response accumulators in the LBA, and the diffusion variability coefficient in the 

diffusion model). 

Figure 3 Quantile probability plots and fits averaged over participants for the minimally 
constrained versions of the diffusion model (left panel), the LBA (right panel) for Gould 
et al.’s (2007) data. The data are shown as filled circles and solid lines.

Discussion

All evidence accumulation models require a “scaling property” to be fixed, 

before parameters can be estimated. To this end, researchers must choose a parameter to 

constrain, but this choice is logically independent of the subsequent decision of whether 

to further constrain that parameter across experimental conditions. In practice, however, 

these two decisions have never been separated – the parameter chosen to satisfy the 

scaling property has always also been constrained across experimental conditions. This 

is a nontrivial assumption, because the scaling parameters of the models could plausibly 

be driven by stimulus characteristics which often differ between conditions. A re-
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analysis of one such case, from Gould et al. (2007), showed that separating these two 

decisions was justified by improved fits to data for both the LBA and diffusion models, 

even allowing for a very stringent model complexity penalty.

For multiple accumulator models, such as the LBA, the assumption of a constant 

sum for correct and incorrect drift rates across conditions implies that increasing the 

stimulus evidence in favor of one response will equally increase the evidence against 

the other response. However, it seems reasonable that some stimulus manipulations 

could decrease the evidence available for both responses. Contrast is plausibly one such 

manipulation: as contrast decreases there may be less evidence supporting either 

response, and our parameter estimates from Gould et al.’s (2007) data were consistent 

with this interpretation. For single accumulator models, such as Ratcliff’s diffusion, the 

conventional constraints imply that the variability in evidence accumulation is 

independent of the mean rate of accumulation. This assumption might be reasonable if, 

for example, the decision signal arises from one set of processes whereas all decision 

noise arises from an independent set of processes. However, our parameter estimates 

suggest that the diffusion model may better account for the effects of decreasing 

stimulus contrast by assuming some dependence between decision signal and decision 

noise. 

Although we have focussed on the diffusion and LBA models, the same 

arguments apply to all evidence accumulation models. Other multiple accumulator 

models have been similarly over-constrained, particularly the many variants of Usher 

and McClelland’s (2001) leaky competing accumulator model, including the racing 

diffusion of Ratcliff, Cherian and Segraves (2003) and the ballistic accumulator (Brown 

& Heathcote, 2005). The Poisson counter models (Smith & Van Zandt, 2000; Townsend 
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& Ashby, 1983; Ratcliff & Smith, 2004; Van Zandt, Colonius & Proctor, 2000) have all 

been similarly over constrained by their own conventional solutions for the scaling 

problem.

General Discussion

The way in which the parameters of evidence accumulation models are 

constrained across conditions is based on careful argument and empirical evidence. For 

example, Ratcliff (1978) proposed that strategic parameters (e.g., boundary separation) 

should not differ among conditions whose order is randomized within blocks of trials. In 

contrast, parameters related to the quality of evidence provided by the stimulus (e.g., 

drift rate) should vary whenever stimulus properties change (see also: Ratcliff & 

Rouder, 1998; Voss et al., 2004). However, the “scaling parameters” of evidence 

accumulation models have always been fixed across all conditions, even though these 

parameters may most naturally be interpreted as ones influenced by stimulus properties. 

A review of the literature reveals neither careful argument nor empirical evidence to 

justify this extra constraint – it appears to have been a result of a misunderstanding 

scaling property (this is certainly true on our own part). Our results show that this over-

constraint may not have always been benign; it can restrict the models’ ability to 

account for data, and it makes implicit psychological assumptions. 

It is possible that experts in the field may have been aware of this additional 

assumption being made when scaling parameters were fixed across conditions. For 

example, more than 25 years ago, Weatherburn (1978), Pike and Dalgleish (1982) and 

Weatherburn and Grayson (1982) discussed whether or not scaling parameters might 

vary in earlier instances of multiple accumulator models. This discussion, however, did 

not include actually trying out such models, and our literature review suggests that the 

150



implications of their discussion have since gone unrecognized (we could find no 

citations of these papers in the past 14 years). Our aim is to ensure that the ever-

expanding group of researchers who use response time models are aware of the implicit 

assumptions made when fixing the scaling parameter constant across conditions.
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Abstract
Recent theoretical developments in the field of absolute identification have stressed 

differences between relative and absolute processes: that is, whether stimulus 

magnitudes are judged relative to a shorter-term context provided by recently presented 

stimuli or a longer-term context provided by the entire set of stimuli. We develop a 

model (SAMBA) that integrates shorter- and longer-term memory processes and 

accounts for both the choices made, and the associated response time distributions, 

including sequential effects in each. The model’s predictions arise as a consequence of 

its architecture and require estimation of only a few parameters with values that are 

consistent across numerous data sets. We show that SAMBA provides a quantitative 

account of benchmark choice phenomena in classical absolute identification 

experiments and in contemporary data involving both choice and response time.

Keywords: absolute identification; absolute identification experiments; absolute 

identification models; response time; response time distributions; sequential effects. 
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Performance in absolute identification tasks has fascinated researchers for over 

50 years (e.g., Garner, 1953; Miller, 1956; Pollack, 1952, 1953). Research in the past 35 

years has emphasized both data and formal theories (e.g., Braida & Durlach, 1972; 

Durlach & Braida, 1969; Laming, 1984; Lockhead, 2004; Luce, Nosofsky, Green & 

Smith, 1982; Marley & Cook, 1984; Petrov & Anderson, 2005; Stewart, Brown & 

Chater, 2005; Treisman & Williams, 1984) and, most recently, has been concerned with 

both the choices made and the time it takes to make them (Kent & Lamberts, 2005; 

Lacouture & Marley, 1991, 1995, 2004). As Shiffrin and Nosofsky (1994) stated in an 

article reassessing the significance of Miller’s classic paper, “absolute identification has 

captured the imagination…not only because the empirical results are so startling but 

also because [they] provide perplexing problems for classic psychophysical models”. 

Luce (1986, Chapter 10) gives an excellent summary of data and theory to that date, and 

Lockhead summarizes data and theory most relevant to relative interpretations of 

absolute identification, where the relativity is with respect to stimuli and responses from 

previous trials. Stewart et al. and Petrov and Anderson provide comprehensive reviews 

of choice data and the related theory, with emphasis on theoretical approaches over the 

past 20 years. 

A typical absolute identification task requires a participant to identify, on each 

trial, which stimulus has been presented from a relatively small pre-specified set. In 

general, people are unable to accurately identify more than about 8-10 stimuli that vary 

on a single physical dimension. For example, the stimuli might be a set of 10 lines 

varying only in length, with the shortest line labeled “#1” and the longest “#10”. A 

participant previews the entire labeled set and is then shown the lines one at time, over 

numerous trials, and asked to identify the presented line with the appropriate response 
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label. Typically, a participant in this task is unable to achieve an overall accuracy above 

about 80%, which is surprising given that the stimuli are chosen such that comparative 

judgments of any pair of them are completely accurate (i.e., judging whether one 

stimulus is smaller or greater than another stimulus presented in rapid succession). 

With such an extensive history, the study of absolute identification is a mature 

field with many well-established benchmark behavioral phenomena that describe how 

choices and response times are affected by stimulus manipulations and by the history of 

stimuli and responses. We broadly separate these phenomena into global and local 

effects:

1. Global effects: Stimulus range and set size. For a fixed set size (N) of 

stimulus-response pairs, performance – measured by the amount of information 

transmitted – increases quickly to an asymptotic level of 2-3 bits as the range of stimuli 

on the physical dimension increases (Braida & Durlach, 1972). Similarly, as set size 

increases the amount of information transmitted increases rapidly at first but then 

asymptotes at 2-3 bits (e.g., Garner, 1953; Pollack, 1952, 1953). Responses to the 

largest and smallest stimuli in a set are faster and more accurate than responses to the 

middle stimuli – the bow effect. Both accuracy and response times worsen for any given 

stimulus as other stimuli are introduced to the set (Kent & Lamberts, 2005; Lacouture & 

Marley, 1995). As shown by Luce et al.’s (1982) d’ analysis3, bow effects in accuracy 

are partly due to bow effects in sensitivity, and partly to response bias produced by the 

constraints on available responses for stimuli near the ends of the range. Ward (1987) 

showed that scaling methods that require either relative or absolute judgments reveal 

profound effects of stimulus-response mappings over days.

2. Local effects: Sequential effect on accuracy and errors. Previous stimuli and 

3  Throughout this paper we use Luce et al.’s (1982) method of calculating d’ to quantify sensitivity.

159



responses can affect the response to the current stimulus (e.g., Lacouture, 1997; Ward & 

Lockhead, 1970, 1971). When an incorrect response is given, it tends to be toward, 

rather than away from, the stimulus from the previous trial (assimilation). The opposite 

pattern occurs for longer lags (contrast): errors tend to be away from, rather than 

towards, stimuli from two or more trials previously4. Accuracy is improved when 

stimuli are constrained to be similar on successive trials (e.g., Luce et al., 1982). In 

particular, the difference in magnitudes between the stimuli presented on the current and 

previous trials influences response accuracy (e.g., Petrov & Anderson, 2005; Rouder, 

Morey, Cowan & Pfaltz, 2004; Stewart at al., 2005).

Previous theoretical accounts of absolute identification have attempted to show 

that some or all of these phenomena could be accounted for using only relative 

processes or only absolute processes. A model that uses only absolute processes is one 

where decisions are made about stimulus magnitudes based on comparisons with some 

longer-term referents (e.g., the context-coding component of Braida, Lim, Berliner, 

Durlach, Rabinowitz & Purks, 1984; Lacouture & Marley, 1995, 2004) or a longer-term 

frame of reference (e.g., Marley & Cook, 1984). On the other hand, a model that uses 

only relative processes (e.g., Laming, 1984; Lockhead, 2004; Stewart et al., 2005) posits 

that decisions are made using only comparisons with recent stimuli and responses. 

Range and set size effects have most often been attributed to absolute processes (e.g., 

Braida et al. and Marley & Cook). Sequential effects, particularly assimilation and 

contrast, have been frequently explained by shorter-term relative judgment processes. 

Other than the model (SAMBA) developed in this paper, there is no model, either 

relative or absolute, that accounts for all of the global and local benchmark phenomena 

4  Since stimuli and correct responses are correlated, care must taken in interpreting these as solely 
stimulus (or response) effects.
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described above. 

Stewart et al. (2005) present a league table (their Table 2) comparing absolute 

identification models on their ability to account for nine benchmark phenomena, and 

associated classical data sets, under three broad headings: limited information 

transmission, bow (set size) effects and sequential effects. The most comprehensive 

relative theory, Stewart et al.’s Relative Judgment Model (RJM5), performs well on 

choice-related phenomena, but does not address response times (RTs). The most 

comprehensive absolute theory, Lacouture and Marley’s mapping model (1995, 2004), 

performs well on global phenomena for both choice and RT, but does not address 

sequential effects. Stewart et al. count RT as one benchmark phenomenon, even though 

a wide range of benchmark RT phenomena have been identified (Lacouture, 1997; 

Lacouture & Marley, 1995, 2004), some paralleling those found in choices, including 

set size effects, stimulus magnitude effects, and sequential effects, and some specific to 

RT, such as distribution shapes for correct and error responses for each stimulus. 

We propose a model of both choice and RT in absolute identification in which 

sequential effects, including assimilation and contrast, result from short-term memory 

effects in an absolute judgment process. Our model further develops key concepts from 

several previous models. Reflecting this cumulative history, the acronym for the model, 

SAMBA, highlights the three core elements: Selective Attention (Marley & Cook, 

1984), Mapping (Lacouture & Marley, 1995, 2004), and Ballistic Accumulation (Brown 

& Heathcote, 2005). Stewart et al. (2005), in their league table, show that the separate 

components of SAMBA are, by themselves, inadequate. This gives motivation for 

SAMBA, which integrates and extends these components, to account for assimilation, 

5  The term "relative judgment model" was earlier used by DeCarlo and Cross (1990) for their model of 
magnitude scaling - their Equation (16).
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contrast, asymmetries in bow effects and local judgment effects. SAMBA provides a 

unified account of choice phenomena as well as the associated RT phenomena, as we 

demonstrate by fitting SAMBA to Lacouture’s (1997) full range of choice and RT data, 

which is averaged over participants, and to Kent and Lamberts’ (2005) and Lacouture 

and Marley’s (2004) individual subject data. While SAMBA is the first model of 

absolute identification to provide a comprehensive account of response times and 

response choices that includes sequential effects, of course we do not claim that other 

such models cannot be developed. For example, both Lacouture and Marley’s (2004) 

and Kent and Lamberts’ (2005) models provide a good account of response times and 

most choice phenomena, but do not explain sequential effects, but these models may be 

further developed to cover such effects. Similarly, models that cover response choices 

but not response times (such as Stewart et al.’s RJM, or Petrov and Anderson’s 

ANCHOR), may be developed further to include a response time mechanism. We note, 

however, that an account of response time added to a choice model is not guaranteed 

success – see, for example, Karpiuk, Lacouture and Marley (1997). 

Recently, Brown, Marley and Lacouture (2007) highlighted the theoretical importance 

of sequential effects in accuracy (see also Petrov & Anderson, 2005; Rouder et al., 

2004; Stewart et al., 2005), thus going beyond just assimilation and contrast, which 

describe sequential effects in errors. Brown et al. focused on Rouder et al.’s analysis of 

accuracy as a function of the difference between the current and previous stimulus. 

Analyzing data from Lacouture’s (1997) line length task, they observed improved 

accuracy for a stimulus similar to the one before, and also for a stimulus very different 

from the one before. Subsequently, Stewart (2007) noted the same pattern in three other 

data sets (Kent & Lamberts, 2005; Neath & Brown, 2006; and Stewart et al., 2005). 
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Brown et al. attributed higher accuracy when successive stimuli are similar to a 

comparison of the present stimulus with the prior stimulus, and higher accuracy when 

successive stimuli are very different to comparison with an end stimulus. Stewart 

explained the pattern by modifying the RJM to include a memory for the stimulus two 

trials back that on some trials is used instead of the memory for the stimulus one trial 

back as the basis for relative judgment. Other experiments by DeCarlo and Cross (1990) 

and DeCarlo (1994) demonstrate that instructions significantly impact whether 

magnitude judgments are made relative to short- or long-term referent stimuli and 

responses. These findings present problems for models that rely solely on absolute or 

solely on relative mechanisms, requiring suitable extensions of the relative approach, as 

shown by Stewart, and a suitable extension of the absolute approach, as we will show 

for SAMBA. 

SAMBA is an integrative model not only because it accounts for choice and RT 

data, but also because it includes relative as well as absolute processes. We show that 

SAMBA is able to model the complex effects shown in Brown et al.’s (2007) analysis 

by replacing one of the end anchors used by Marley and Cook’s (1984) selective 

attention process with the estimated magnitude of the previous stimulus. However, this 

relative judgment process is not required for SAMBA’s account of classic absolute 

identification phenomena, including assimilation and contrast, so we omit it in our fits 

to benchmark data sets exemplifying these phenomena. Only Lacouture’s (1997) and 

Stewart et al.’s (2005) data show effects that are strong enough to require explicit 

modeling by the relative judgment process in SAMBA. 

In the following sections we first provide details of SAMBA, then describe a set 

of benchmark empirical phenomena and associated classic data sets. Along with these 
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descriptions we show that SAMBA accurately fits each of these classic benchmark data 

sets. The benchmark sets presented here were chosen in order to provide insight into the 

workings of SAMBA and to illustrate its account for phenomena beyond the scope of 

any of the models from which is was derived, with a particular emphasis on sequential 

effects. Note that SAMBA also accounts for many other benchmark phenomena that we 

do not have space to illustrate here, such as the effects of set size on RT. Finally, we 

present comprehensive fits of SAMBA to two data sets: Lacouture (1997) and Stewart 

et al.’s (2005) Experiment 1. We used Lacouture’s data to test SAMBA’s ability to 

simultaneously account for all of the choice and RT phenomena in a complex data set 

using a single set of parameter values. Although Stewart et al. did not collect RTs, their 

data are important because of experimental manipulations which allow a strong test of 

SAMBA, and for comparison of its fits to those of the RJM.

The Theoretical Challenge

The paradox of absolute identification is that the task is superficially very 

simple, yet the performance of participants is both inaccurate and surprisingly complex. 

Our approach to this challenge is similar to that taken by Ratcliff’s (1981) theory of 

perceptual matching: we explicitly model an integrated architecture for perceptual, 

memory and decision processes in sufficient detail to obtain predictions for the broadest 

possible range of observed behavior. However, our approach differs from Ratcliff’s, and 

many theories of absolute identification, which assume that repeated presentations of 

any given stimulus result in a distribution of internal magnitude estimates, and that 

certain parameters of the distribution, often the variance, must be estimated for each 

experimental context in which the stimulus appears. Such approaches are analogous to 

signal detection theory, providing a successful description of the data without 
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addressing the deeper question of how these magnitude estimates arise. As well as being 

less intellectually satisfying, models that begin with parameterized distributions also fail 

to provide constrained accounts of some of the most fundamental benchmark 

phenomena. For example, there are powerful effects caused by very simple stimulus 

manipulations such as set size (N), stimulus spacing, and the bow effects due to stimulus 

magnitude. In a framework similar to Ratcliff’s, these effects are modeled by changes in 

parameter estimates, but this approach fails to provide an explanation of how the 

changes arise. 

With SAMBA we adopt a less flexible approach that provides strict constraints, 

and reduces the number of parameters required. We directly model the process by which 

an observer produces a magnitude estimate when confronted with a stimulus (see also 

Kent & Lamberts, 2005). We model this process using an extended version of Marley 

and Cook’s (1984) selective attention theory. This theory explains how an observer can 

attach a numerical magnitude estimate to a stimulus, and how these magnitude estimates 

are distributed across repeated trials. This establishes a mechanism for producing the 

distributions, and for describing how those distributions change under experimental 

manipulations, without requiring arbitrary parameter changes. The remaining parts of 

the SAMBA architecture provide a similarly constrained explanation of the process by 

which a response is chosen in light of the magnitude estimate. 

An even deeper philosophical question arises when considering the theoretical 

completeness of the simple parametric approach to stimulus representations. The 

participant’s task in absolute identification is to attach a response label, such as #1, #2 

and so on, to a stimulus, with the physical stimulus measured in, for example, decibels, 

Hertz, or metres. A theoretical account is incomplete if it begins by assuming that 

165



numbers are attached to stimuli, and that these are simply transformed into response 

labels. Lacouture and Marley’s (1995, 2004) and Stewart et al.’s (2005) models suffer 

from this weakness. Put another way, the central task of absolute identification is to 

associate a numeral with a stimulus magnitude, so it is dissatisfying to consider a theory 

that begins by assuming that stimulus magnitude estimates are available, with no 

explanation of how they arise. 

SAMBA differs from the simple distributional approach in a second way that 

greatly reduces the number of parameters that must be estimated in fits to data. Like 

signal detection theory, simple distributional models typically make decisions using a 

set of cutpoint or referent parameters. The disadvantage of this approach is that the 

number of referent parameters grows linearly with the number of response alternatives 

and usually no explanation is provided of how participants choose appropriate values. 

SAMBA adopts a framework similar to that of Petrov and Anderson’s (2005) ANCHOR 

model; we assume that participants learn average magnitude estimates corresponding to 

each response, and that these magnitudes act as referents. As this learning is assumed to 

be accurate, at least when feedback is correct, the referent values are entirely 

determined by the experimental design, and hence in model fitting they do not have to 

be estimated. Consequently, SAMBA’s flexibility in fitting data is greatly curtailed. 

Lacouture and Marley’s (1995) parameter free mapping model is used to transform 

referent estimates to what are, effectively, a set of tuning curves that provide input to 

SAMBA’s decision stage. Hence, we meet the theoretical and practical challenge posed 

by the potentially large number of responses in absolute identification, as the number of 

parameters required to fit SAMBA does not change with the number of responses. 
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Model Overview

SAMBA integrates three successful elements from previous models. It uses the 

time-dependent (i.e., not the asymptotic) version of Marley and Cook’s (1984) selective 

attention model of stimulus representation, and Brown and Heathcote’s (2005) ballistic 

accumulator model of response selection. These model elements do not constitute a 

complete account because the selective attention component produces a single 

magnitude estimate while the ballistic accumulator component requires N numerical 

inputs, one for each possible response. We link the two components with Lacouture and 

Marley’s (1995) mapping process. The vertical integration of model components is an 

important feature of SAMBA. Often in cognitive psychology, different levels of 

processing are considered separately, and models are developed independently for each. 

Greater model constraint and explanatory power can be achieved by integrating models 

to span several levels of explanation, from stimulus representation to response selection 

(see Ratcliff, 1981, for a similar approach to perceptual matching). The three elements 

we borrow from prior models successfully explained some aspects of absolute 

identification behaviour, but not others, making each incomplete. Some of these 

problems are naturally fixed by integration within SAMBA, but others are not. We 

address these remaining issues by modeling the selective attention and ballistic 

accumulator processes at the level of the duration of the trial; the model can be specified 

in real time as more temporally fine-grained data becomes available (see the General  

Discussion).

Figure 1A illustrates the three stages of the model. SAMBA’s first stage is a 

modified version of Marley and Cook’s (1984) selective attention theory. The selective 

attention (SAMBA) stage maintains a representation for the context of the experiment, 
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and uses this context to produce estimates of sensory magnitude. The context 

representation is maintained by activation of a range of units that are in one-to-one 

correspondence with stimulus magnitudes, such as line lengths or intensity of tones of 

the same frequency. Input to the selective attention stage comes from a relatively 

accurate psychophysical representation of each stimulus. We assume that the stimuli are 

represented topographically at the psychophysical level and that psychophysical input 

causes selection of a corresponding unit. Importantly, neither the psychophysical 

representation nor the selected unit directly provides a numerical estimate of the 

stimulus magnitude. In this, we agree with Krantz’ (1972, p. 175) view that “I do not see 

how sensations could be paired directly with numbers at all”. Instead, stimulus 

magnitudes are estimated by the summation of activity between the unit selected by the 

psychophysical input and the ends of the active context.
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Figure 1. The SAMBA model. Panel A illustrates the model at a general level, to be read 
from bottom to top. Panel B shows how the magnitude estimate produced by the 
selective attention stage varies over trials. Summed activities from the stimulus location 
to the lower and upper anchors are combined to make a magnitude estimate in the 
interval [0,1], and this varies with changes in the activity of the Poisson accumulators. 
Panel C shows how the magnitude estimate is transformed into N response strengths by 
the mapping process. In the example, a magnitude estimate of 0.25 (corresponding to 
stimulus #2) is transformed into N=6 response strengths, shown by the heights of the six 
lines above x=.25. Panel D shows how the ballistic accumulator stage makes a response 
decision. The response strengths from the mapping stage drive ballistic accumulators, 
with the first one to reach a threshold determining the choice. Between trials, the 
activity in the ballistic accumulators decreases by passive leakage.

This magnitude estimate is transformed into N response strengths6 – one for each 

6  We use “response strengths” instead of “mapping outputs” or “drift rates” simply as a mnemonic 
convenience. We hope the reader will be reminded by this terminology that these (unobserved) 
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of the N possible responses – by Lacouture and Marley’s (1995) mapping. The 

transformation works using a long-term memory for each stimulus, given by the 

average of its magnitude estimates on previous trials. The final stage of SAMBA is an 

elaborated version of Brown and Heathcote’s (2005) ballistic accumulator. This stage 

takes the N response strengths produced by the mapping and assigns each one to a 

separate decision accumulator. The activations of these accumulators increase at rates 

determined in part by the response strengths output from the mapping, and in part by the 

dynamics of the accumulators, including mutual inhibition. A response is made as soon 

as any accumulator’s activation exceeds a response threshold. RT is modeled as the time 

taken for that accumulator to reach threshold plus a constant amount of time taken for 

non-decision processes. We now describe each stage in more detail.

As input to SAMBA we assume a simple spatial psychophysical stimulus 

representation corresponding to topological projections in the sensory areas of the brain, 

such as retinatopic or tonotopic maps (e.g., Romani, Williamson & Kaufman, 1982; 

Wiemer & von Seelen, 2002). The physical magnitudes of stimuli are mapped quite 

accurately onto this psychophysical dimension, with only a small amount of variability. 

Most absolute identification experiments involve stimuli that are sufficiently separated 

so that psychophysical variability does not cause errors. Hence, variability in the 

psychophysical stage is neglected in the fits of SAMBA that we report, except in two 

cases where stimuli are closely spaced.

The selective attention stage produces a magnitude estimate from the ordinal 

psychophysical representation. This process, with the addition of decision cutpoints, has 

had considerable success in fitting classic choice data in absolute identification (Marley 

& Cook, 1984) and also magnitude estimation data (Marley & Cook, 1986). The 

quantities drive the ballistic accumulators towards making an overt response.
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selective attention model has been successful because it provides a stimulus 

representation that dynamically adapts to changes in the experimental design, such as 

stimulus spacing and choice set size. Although motivated differently, this stage performs 

similarly to the successful theory of sensory trace and context coding (see, e.g., 

Berliner, 1973, Berliner Durlach & Braida, 1977, and Braida et al., 1984) and to the 

attention band proposals of Weber, Green and Luce (1977), Luce et al (1982) and 

Nosofsky (1983).

Selective attention gives SAMBA a mechanism by which to attach context- and 

time-dependent numerical representations to stimuli and stimulus differences, without 

making arbitrary assignments. For example, suppose an experiment uses pure tone 

stimuli, all of the same frequency but of different intensities. Over pre-experimental 

training and initial trials, the participant might estimate that the stimuli range is between 

50dB and 70dB, and so the context becomes the range between these values. 

Importantly, the selective attention stage does not assume that the psychophysical 

representations are addressable – that is, there are no numbers associated with the 

psychophysical locations. Instead, we explicitly model the process by which participants 

estimate stimulus magnitudes without having access to numerical tags. A finite set of 

leaky accumulators is put in a one-to-one ordered correspondence with the 

psychophysical dimension. Presentation of a test stimulus results in two effects. Firstly, 

a corresponding location on the topographic psychophysical representation becomes 

active (i.e., is selected). Secondly, the accumulator that corresponds to the 

psychophysical representation of the stimulus is selected. The selection of this 

accumulator allows the participant to identify its ordered location within the array of 

units. That is, the observer can identify which accumulators are below, or above, the one 
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selected by the presented stimulus. 

To aid in understanding how the selective attention process helps to determine 

magnitude information from an ordered set of accumulators consider an analogy. 

Imagine a very long row of lamps on the wall of a room. A contiguous range of the 

lamps are lit green, but with flickering intensities. The lit lamps represent the range of 

stimuli in an experiment and the brightness of each lamp corresponds to the current 

level of activation of each accumulator. Now suppose that the only method an observer 

has of measuring the activity of the lamps is to gauge the total brightness of portions of 

the array, but the absolute position of any single lamp. Further suppose that, if any 

particular lamp changes to red, an observer can select it and use this location to partition 

the array into those lamps above and those below. With only these abilities, the observer 

is able to estimate (relative) magnitudes using the total brightness of the green lamps 

below the selected red lamp, and the total brightness of the green lamps above the 

selected red lamp. Each of these sums will be large or small depending upon the 

position of the currently lit red lamp, so they carry relative magnitude information. 

Finally, as with a flashlight shining on a surface, the average total intensity of the lit 

lamps is fixed, independent of the range of lit lamps. 

Suppose, for example, that presentation of a #2 stimulus (a 52 dB tone in a set of 

range 50-70 dB) corresponds to a lamp near the lower end of the green range turning 

red. The separation between the lower end of the row of green lamps and the red lamp is 

small, so the sum of the intensity of the lamps between the two will also be small. 

However, the estimate of magnitude is noisy because the lamps are flickering, and so 

the sums of their intensity will also vary. Other measurements are also possible – for 

example, if two lamps were to change color, the sum of the intensity of the lamps 
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between them could be estimated in a similar way.

We call the first and last active accumulators on the attention dimension 

“anchors”; they correspond to stimulus magnitudes that span the range used in the 

experiment. The anchor positions are assumed to be under the direct control of the 

participant. The entire range of accumulators between the anchors is kept active by 

continual attention during an experiment, analogous to the process that keeps the lamps 

flickering. Activation is modeled as a Poisson process of mean rate λ events per trial, 

and so we will sometimes refer to the accumulators as “Poisson accumulators”. Without 

loss of generality, we assume each Poisson event increases the activity of a randomly 

selected accumulator by a unit amount. This activation is combined with a passive 

decay process: in the absence of attention, each accumulator’s activity decreases by a 

factor of α over the course of a trial7. The combination of Poisson activation and passive 

decay results in each accumulator having an activation value that varies from trial to 

trial (Marley & Cook, 1984). The average total activity in all accumulators is set by the 

balance between the attention and decay rates, namely η=λ/(1-α). This average total 

activity is the major determinant of the overall accuracy of responses in SAMBA.

Stimulus magnitudes are estimated by summing activity in sub-ranges of 

accumulators, in particular, the total activity from the upper anchor (U) and from the 

lower anchor (L) to the current stimulus. Taking the sums between the current stimulus 

and each of the anchors produces two estimates of stimulus magnitude, one relative to 

the lower anchor (ΣL) and one relative to the upper anchor (ΣU). These are combined 

into a single magnitude estimate by the ratio ΣL/(ΣL+ΣU), which is naturally constrained 

7  The parameters λ, α and η are similar to Marley and Cook’s (1984) parameters of the same names, 
but differ because we use discrete time (trials) and they used continuous time. If T is the duration of a 
trial, then our λ corresponds to their λT, our α corresponds to their 

€  

e - a T , and our η is the reciprocal of 
theirs.
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to be between zero and one. As shown in Figure 1B, this magnitude estimate varies 

from trial to trial, even if exactly the same stimulus is repeated, because the activities in 

the Poisson accumulators vary as a result of the attention process. Importantly for 

absolute identification, the variability of the magnitude estimate is largest in the centre 

of the range, causing SAMBA to predict a bow effect in response accuracy and 

sensitivity. This projection of psychophysical stimulus representations for all stimulus 

modalities onto a common bounded interval is supported by research on magnitude 

estimation and cross-modality matching by Krantz (1972), Teghtsoonian (1973) and 

Teghtsoonian and Teghtsoonian (1978, 1997).

The observer accumulates magnitude estimates ΣL/(ΣL+ΣU) from each trial and 

stores an average magnitude estimate for each stimulus in a long-term memory. We 

assume that this long-term memory becomes stable relatively quickly, particularly when 

accurate feedback is provided. Since we aggregate data over many trials, we 

approximate the learning and memory process by the assumption that a participant has 

available an accurate memory for the average magnitude estimate corresponding to each 

stimulus. These memories, combined with the end anchors, constitute the set of 

referents stored in long-term memory that underpin SAMBA’s absolute process, 

similarly to the anchor values in Petrov and Anderson’s (2005) ANCHOR model, or the 

cut points in Stewart et al.’s (2005) RJM. The learning of referents is an important issue 

(see, e.g., Petrov & Anderson), and is an area where SAMBA could be extended in 

future. When discussing a false-feedback experiment below, we explore a simple 

beginning to a referent learning mechanism in SAMBA.

The magnitude estimate produced by the selective attention stage must be 

transformed into N response strengths in order to provide inputs for the ballistic 
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accumulator stage. The transformation is made by Lacouture and Marley’s (1995, 2004) 

mapping process, illustrated in Figure 1C and presented in more detail below. The 

mapping is error free relative to its referents: for example, if the estimate of stimulus 

magnitude is closest to the referent for stimulus #2, then the mapping will provide a 

response strength that is largest for response #2 (strengths for responses #1 and #3 will 

be next, and so on).

On each trial, the outputs of the mapping stage are analogous to a tuning curve 

over the possible responses, with the response strengths contingent on how well the 

current input matches the long-term referent for each stimulus. In contrast to the 

multiple parameters of other tuning curve models, the positions, widths and shapes of 

the tuning curves produced by the mapping stage are determined entirely by the values 

of the referents held in long-term memory. The fixed form of Lacouture and Marley’s 

mapping provides significant constraint, greatly limiting SAMBA’s flexibility for fitting 

choice and RT data. For instance, an alternative approach, explored by Karpiuk et al. 

(1997), linked the output of the selective attention stage with the input to the decision 

stage via parameterized tuning curves, given by Link’s (1992) wave theory. This 

framework has great flexibility to adjust decision cutpoints, whereas the mapping 

solution has a limited ability to adjust such cutpoints. Our position is that, until clearly 

required to fit data, the more constrained model is preferable. 

To illustrate how the mapping operates, and also how it naturally handles 

unevenly-spaced stimuli, consider an experiment from Lockhead and Hinson (1986). In 

one part of this experiment, the stimuli were tones of intensity 58dB, 60dB and 66dB. 

Suppose that a participant placed the lower anchor 2dB below the lowest stimulus (i.e., 

at L=56dB) and 4dB above the highest (i.e., at U=70dB). With this setup, regardless of 
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any parameter settings, the selective attention stage will produce stimulus magnitude 

estimates for the three stimuli with average values of {1/7, 2/7, 5/7}. Note that these 

magnitude estimates naturally reflect the unequal spacing of the stimuli – three times 

the spacing between the upper two stimuli than between the lower two stimuli, and this 

property holds regardless of the locations that the observer selects for the anchor values 

(L and U), provided the stimulus locations lie between them..

Continuing this example, the mapping transforms a magnitude estimate into 

three response strengths, one for each of the three possible responses (#1, #2, or #3). 

The computations of the mapping stage are specified entirely by the long-term average 

stimulus magnitude estimates. A magnitude estimate, say z, is linearly transformed into 

a response strength for each and every response j=1…N according to (2Yj-1)z-Yj
 2+1, 

where Yj is the average magnitude estimate for the jth stimulus8. For the Lockhead and 

Hinson (1986) example, suppose the 60dB stimulus was presented. On this particular 

trial, the selective attention stage might produce a magnitude estimate of .3, which is 

quite close to the long-term average value of 2/7 for this stimulus. The mapping stage 

transforms this value into three response strengths: the strength for response #1 is 

€  

2 × 1
7 - 1( ) × 0 . 3 - 1

7( )
2

+ 1  = 0.765; for response #2 it is

€  

2 × 2
7 - 1( ) × 0 . 3 - 2

7( )
2

+ 1  = 0.790; and 

for response #3 it is 

€  

2 × 5
7 - 1( ) × 0 . 3 - 5

7( )
2

+ 1  = 0.618. Notice that the strength is greatest 

for the correct response (#2).

Figure 1C illustrates the mapping solution for a more standard experiment, with 

six evenly-spaced stimuli, and six lines corresponding to the response strengths for the 

six possible responses. In the example, stimulus #2 is presented so the selective 

8  Lacouture and Marley (1995) motivate this parameter free solution by requiring a solution that: a) 
makes use of all of the bounded input and bounded output range in every experiment and b) has 
cutpoints that are midway between the mean activities for adjacent stimuli.
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attention stage will – on average – produce a magnitude estimate of .25, shown by the 

vertical arrow in Figure 1C. From this magnitude estimate, the mapping produces six 

response strengths, shown by the heights of the six lines immediately above the arrow. 

As required for a correct response, the strength corresponding to response #2 is greatest, 

with responses #1 and #3 next, response #4 after that and so on.

The mapping stage brings many useful properties to SAMBA. Firstly, it provides 

a powerful way to simplify the model and greatly reduce the number of free parameters 

required to produce response time predictions. Models of response time distributions for 

N-alternative tasks generally have some multiple of N2 parameters (e.g., see Busemeyer 

& Townsend, 1992, 1993). These parameters specify response strengths or drift rates for 

each response, contingent on each stimulus. Lacouture and Marley’s mapping replaces 

this entire set of O(N2) parameters with a process for producing drift rates given a 

stimulus magnitude estimate as input.

The outputs of the mapping component provide the input to the final response 

selection or decision stage of SAMBA, which is based on Brown and Heathcote’s 

(2005) ballistic accumulation model. The ballistic accumulator model brings three 

important properties to the modeling absolute of identification data. First, the use of an 

accumulator process allows SAMBA to make very detailed predictions about response 

time. Second, the process of passive leakage in ballistic accumulator activities provides 

a natural explanation of very short-term sequential effects without the need to posit 

extra processes. Third, the ballistic accumulator includes competition - also called 

lateral inhibition - between accumulators, and this naturally means that responses 

become slower as the number of alternatives (set size, N) increases. 

The decision stage associates each of the N responses with a competitive 
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ballistic accumulator (Brown & Heathcote, 2005; see also Usher & McClelland, 2001). 

The inputs to the decision accumulators are the outputs of the mapping stage, with a 

common (single) sample of zero-mean Gaussian noise added to every response strength, 

with the standard deviation (σM) estimated from the data. The noise is analogous to the 

“drift variance” included in almost all models of choice RT, as first introduced by 

Ratcliff (1978, his parameter η). In our applications, the estimated standard deviation of 

the noise (σM) was sufficiently small so that at least one decision unit always received a 

positive input. As the same sample is added to all inputs, σM models stimulus 

independent variability due to global factors such as fluctuations in arousal. The value 

of σM has little influence on accuracy, because it does not alter differences between 

inputs. Hence, σM has a selective influence on variability in RT, which is also 

determined by sequential effects in the decision stage discussed in detail later9.

 Figure 1D illustrates an example decision process. Each of the N response 

accumulators begins the decision stage with a starting activation level determined by 

previous inputs. The starting levels are different for each accumulator, and the activation 

levels increase deterministically at rates dictated by the response strengths from the 

mapping stage and competition amongst accumulators. Activation xj in accumulator 

j=1…N changes according to a linear, first order system of differential equations: 

( ) ( )∑
≠

−=′
jp

pjj txItx b . Here, Ij represents the response strength from the jth unit of the 

mapping stage, plus the Gaussian noise sample with standard deviation σM. The 

9 A reviewer questioned whether the σM parameter might be replaced by within trial variability in the 
decision stage, or perhaps another source of variability in the magnitude estimates. Other sources of 
variability affect error rates, which σM does not, and would thus increase model flexibility, by 
providing another mechanism for modelling error responses. Our decision not to include this extra 
flexibility was based on parsimony, as the data we examined did not seem to require it. However, we 
have no grounds to rule out other types of variability.
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parameter β>0 represents lateral inhibition, and causes the increase in the activation to 

be nonlinear. The system of coupled differential equations describing accumulation 

during the decision stage can be solved analytically by matrix algebra, for any response 

set size N (see Brown & Heathcote, submitted).

 A response is chosen corresponding to the first accumulator to reach a threshold 

(C, the same value for all accumulators) and the response time is given by the time 

taken to reach that criterion, plus a constant time for non-decision processes, t0. This 

system of accumulators ensures that a finite response threshold will always be reached 

in a finite time. This occurs because at least one input is positive and because we use a 

simplified version of the ballistic accumulator model with no passive leakage within a 

trial (see Brown & Heathcote, 2005, for further details). The example activation 

trajectories in Figure 1D correspond to the mapping example illustrated in Figure 1C. 

The trajectory corresponding to the correct response (#2) increases fastest, and reaches 

the threshold first, so a correct response would be made in this example with a response 

time of just over 1.5s. If the response threshold were set lower, say at C=20 instead of 

C=25, the response time would be faster, around 0.9s, but an error would be made: the 

model would give response #3, instead of the correct response (#2). The error occurs 

because the ballistic accumulator for response #3 began the decision stage with an 

advantage over the accumulator for response #2, and it takes some time for this 

advantage to be overcome.

The decision stage of SAMBA is more constrained than Brown and Heathcote’s 

(2005) ballistic accumulator model, and most other models of two-choice RT (see 

Ratcliff & Smith, 2004, for a recent summary), in its assumptions about the starting 

points of the evidence accumulation processes. These models assume that accumulation 
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for each response unit starts from a random value. In SAMBA, the accumulator start 

points are completely determined by passive decay from their values at the end of the 

previous trial (also see Laming, 1968). This mechanism not only specifies previously 

unspecified details of the genesis of start point variability in theories of choice RT, it 

also enables the model to explain short-term sequential phenomena in absolute 

identification, including assimilation and response repetition effects. For typical 

parameter values, about one quarter of incipient choices generated by the selective 

attention and mapping stages of SAMBA are changed by the ballistic accumulators, due 

to differences in the starting points of the evidence accumulation processes, left over 

from the previous trial.

Brown and Heathcote’s (2005) ballistic accumulator model, used in SAMBA’s 

decision stage, has been simplified further by Brown and Heathcote (submitted) by 

omitting the lateral inhibition term (i.e., by setting β=0), making a linear ballistic 

accumulator model (LBA). The LBA model has computational and analytic advantages 

over the ballistic accumulator model, but nevertheless we choose not to use it in 

SAMBA. The lateral inhibition element in the ballistic accumulator makes SAMBA 

predict increased response time with increased set size (N), without the need for any 

parameter changes with set size. As discussed by Brown and Heathcote (submitted), if 

LBA were used in SAMBA then an extra assumption would be required to fit the 

increase in response time with set size. For example, the LBA would predict increased 

RT with set size if the outputs of the bow mapping stage decreased with increased set 

size (e.g., by fixing the sum of the response strengths across set size).

An Absolute Account of Sequential Effects on Errors

SAMBA makes strong predictions about sequential effects in errors and RT, 
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because it unambiguously attributes contrast effects to processes producing a context-

dependent stimulus representation, and repetition and assimilation effects to the 

processes producing a response. As in other models of choice RT, Brown and Heathcote 

(2005) assumed that the start points for the ballistic accumulators (x0) were independent 

random samples from a common uniform distribution. SAMBA replaces this 

assumption with a deterministic mechanism based on passive leakage. This passive 

leakage is illustrated in Figure 1D, where dotted lines show how accumulated evidence 

decays during non-decision and between-trial times. Computationally, after each 

decision is completed, the lateral inhibition and stimulus input processes (

€ 

I j − β x p

p ≠ j

∑ ) 

are replaced by a passive decay process. Decay returns each accumulator’s activation 

exponentially back towards zero at a constant rate: 

€ 

′ x j t()=−γx j t(). Therefore, after a 

constant inter-trial interval (ITI) each accumulator begins the next decision process with 

activation Dz, where z was the activation level for that accumulator when the previous 

response was made, and D is given by exp(-γ.ITI). In our model fits, we make the 

approximation that ITI is constant throughout the experiment, and estimate only the 

value D. At the beginning of each decision process the accumulators corresponding to 

the previous response and those for nearby responses have an advantage, as illustrated 

in Figure 1D. This results in response assimilation and in RT and accuracy advantages 

for repeated stimuli.

Contrast effects arise through reallocation of activity in the selective attention 

stage. In particular we assume that the participant has some control over the Poisson 

process, and that this control is used to preferentially attend to locations selected by 

recently presented stimuli. Reallocation is modelled by a probability (M) that, each time 
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an accumulator is to be incremented by the Poisson process, the increment is directed to 

the accumulator selected by the most recently presented stimulus. Consequently, the 

activity of accumulators selected by recently presented stimuli is increased, which in 

turn makes magnitude estimates near those values larger. These locally larger values 

cause a contrast effect that decreases with time as activity in the accumulators decays. 

To keep the model as simple as possible, we made the default assumption that 

participants re-direct activity only towards the accumulator selected by the most 

recently presented stimulus. This assumption causes contrast to have its greatest 

magnitude at lag=2, after the (stronger) assimilation effect has passed. This pattern 

matches most absolute identification data, but for data from Lacouture (1997) we 

observed the peak contrast effect later, at lag=3 or 4. We modeled those data by 

assuming that the observer persists in re-directing activity for K trials. As before, each 

Poisson event has a probability M of being redirected, but the redirection is to one of the 

locations selected by the K most recently viewed stimuli. 

Integrating Absolute and Relative Judgment 

Research into absolute identification has become focused on the distinction 

between absolute vs. relative interpretations, both for empirical phenomena and 

theoretical accounts. We think this distinction is not as useful, nor as clear-cut, as others 

believe. Even the most relative models (such as Stewart et al.’s, 2005, RJM) employ 

absolute knowledge about the global nature of the experiment: for example, when the 

RJM is used to model unequally-spaced stimuli, such as in Lockhead and Hinson 

(1986), the (global, absolute) scaled magnitudes of the stimulus differences must be 

taken into account in setting the spacing of cutpoints, ensuring that the global stimulus 

setup is captured in the model. 
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Our description of SAMBA has, so far, been entirely in terms of absolute 

processes in the sense that the present stimulus magnitude is evaluated against long-

term referents such as the anchors. However, Rouder et al. (2004) observed an accuracy 

bonus for repeated stimuli, and for stimuli that are very similar to the preceding 

stimulus, that cannot be accommodated within SAMBA without including a partially 

relative process. Below, we extend Rouder et al.’s analysis and demonstrate that the 

accuracy bonus also translates to an RT bonus. The absolute version of SAMBA we 

have outlined so far accommodates this phenomenon in a qualitative sense; it predicts 

that responses to repeated stimuli are faster and more accurate. However, it fails to 

quantitatively fit these data, as the predicted accuracy and RT bonuses are smaller than 

observed. 

The RJM also matches the accuracy effects qualitatively, but fails quantitatively 

by predicting too large an accuracy bonus for several data sets (see Brown et al., 2007). 

Stewart (2007) showed how the RJM could provide a better quantitative fit when 

modified to be slightly more absolute, by extending the model’s memory so that the 

stimulus two trials back is, on certain theoretically specified trials, used as the basis for 

judgments in place of the memory for the stimulus one trial back. Similarly, we have 

found that SAMBA can provide a better quantitative fit when modified to be slightly 

more relative – confirming that Rouder et al.’s (2004) analysis, and our extension, 

suggests the need for both absolute and relative processes in models such as RJM and 

SAMBA. 

Working from the assumption that absolute identification must include both 

relative and absolute processes, we have developed SAMBA to provide the first 

theoretical account to integrate these processes in a consistent manner. The key to the 
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integration is the use of anchors in SAMBA. In the absolute version of SAMBA, the 

anchors bracket the smallest and largest stimuli that are important in the experimental 

context, and incoming stimuli are judged against these anchors, via the ratio ΣL/(ΣL+ΣU). 

This ratio estimates the magnitude of the current stimulus within the range defined by 

the two anchors, [L,U]. On the other hand, in the relative version of SAMBA, a stimulus 

is judged within a smaller interval, with one of the anchors replaced by the Poisson 

accumulator selected by the previous stimulus. If the previous stimulus is larger than the 

current one, the current stimulus is judged relative to the interval between the lower 

anchor and the previous stimulus; if the previous stimulus is smaller, the current 

stimulus is judged relative to the interval from the previous stimulus to the upper 

anchor. These assumptions are similar to assumptions made by RJM’s relative judgment 

process, although there are also important differences (e.g., the RJM uses a separate 

mechanism when successive stimuli are judged to be equal).

To illustrate SAMBA’s relative process consider an example. Suppose stimulus 

#4 was presented on the previous trial. If stimulus #7 is presented next, it would be 

judged in the interval [4’, U], where 4’ indicates the Poisson accumulator associated 

with the previous presentation of stimulus #4. After being restricted to these 

subintervals, SAMBA works as before10. That is, the current stimulus magnitude is 

estimated by summing up the activation between the current stimulus and each end of 

the subinterval, i.e., 4’ and U, and these two sums are combined into the ratio of the 

form Σ4’/(Σ4’+ΣU). Then, the mapping stage operates in the usual manner to transform 

the magnitude estimate into a set of response strengths, except that the mapping is 

10  We have not directly modeled the process by which the observer decides whether the current 
magnitude estimate is smaller or larger than the previous one, but it would be trivial to do so. Since 
the numerical sizes of these magnitude estimates are available to the observer, a simple accumulator 
mechanism could instantiate our assumption of very fast and accurate larger versus smaller decisions.
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restricted to the responses commensurate with the subinterval.  In particular, zero 

strengths are given to responses that are smaller than the previous response, if the 

current stimulus is larger than the previous stimulus, and vice versa. Finally, the ballistic 

accumulator stage proceeds as normal to select a response, with an associated response 

time. 

This mechanism is partially relative because it uses a memory of the previous 

stimulus, and it is partially absolute because it still requires one of the anchors from 

long-term memory, and employs the mapping solution, which is based on long-term 

memories for stimulus magnitude estimates. In SAMBA, the relative judgment process 

is under strategic control, so that a participant must choose to use relative judgment. In 

fitting data from the comprehensive data set of Lacouture (1997), we obtain the best fit 

by assuming partial use of the relative mapping process. We model this with a parameter 

P indicating the proportion of trials and/or participants that use the relative process – 

there were insufficient data at the individual subject level to separate these 

interpretations. Only the analysis developed by Rouder et al. (2004) provides clear 

evidence for the use of the relative process through accuracy and RT bonuses for repeat 

and near-repeat stimuli (where a “near-repeat” stimulus is one that is close, in the rank 

order of the stimuli, to the stimulus presented on the previous trial). We modeled the 

data from Stewart et al.’s (2005) Experiment 1 with the simpler assumption that all 

participants used a relative process on all trials. All other analyses, including our fits to 

assimilation and contrast phenomena, do not depend on the relative process.

Parameters of the Model

Table 1 shows SAMBA’s 13 parameters, along with the data characteristics that 

they affect. A key feature of SAMBA is that the parameters’ effects are defined by the 
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architecture of the model and can be interpreted in terms of psychological processes. 

This provides strong predictions and allows for tests of selective influence – certain 

parameters must only be altered by particular experimental manipulations, and those 

manipulations must affect only the parameters in question. In this section we outline 

some of these parameter constraints. The first stage of SAMBA, our simple 

psychophysical stimulus representation, has just one parameter (σP). Each of the 

remaining stages are affected by two or more parameters, with one extra parameter (t0) 

to account for the sum of the times taken to complete processing in non-decision stages 

and to make a response after the decision is made. 

The first parameter (σP) determines the standard deviation of noise in the 

psychophysical stimulus representation. It only has an appreciable effect on SAMBA’s 

predictions when stimuli are close enough in magnitude to cause errors in comparative 

judgment (i.e., judgments about stimuli presented simultaneously or in a rapid 

sequence). With few exceptions the experiments we model use adjacent stimuli that are 

sufficiently widely spaced so that we can fix σP at zero. Four of the next six selective 

attention stage parameters determine the distribution of Poisson activity in that stage, 

namely: the mean number of pulses in the Poisson process over one trial (λ), the rate of 

decay of each accumulator (α), the proportion (M) of activity directed towards the unit 

selected by the previous stimulus (or stimuli), and the duration in trial units (K) of that 

direction. Activity is otherwise assumed to be distributed with equal probability across 

locations. The remaining two selective attention stage parameters, the positions of each 

end anchor (L and U), determine the range of the accumulators, and allow SAMBA to 

accommodate asymmetries in data (i.e., more accurate, and slower, responses to larger 

than smaller stimuli, or vice versa). 
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Table 1. Model elements.
Stage Affected Symbol Description Principle Effect

Psychophysical σP Psychophysical noise

Overall accuracy for 
small stimulus 
range
 

Selective 
Attention

Accumulator Update Equation: xn+1 = αxn + Poisson(λ)

η
[ λ/(1-α) ]

Ratio of the mean number of pulses in 
the Poisson process to the 
accumulator decay rate

Overall accuracy 
and bow in 
accuracy

α Rate of decay for accumulators
Overall accuracy 
and contrast time 
course

M,K
Mean proportion (M) and duration (K) 
of activity directed to prior stimulus 
location

Contrast 

L,U Position of the lower and upper 
anchors

Size and symmetry 
of bow effects

Selective 
Attention and 

Mapping
P Probability of using relative process Sequential effects 

on accuracy and RT

Mapping
Output for response j given magnitude estimate z: (2Yj-1)z-Yj

 2+1+N(0,σM)

σM
Standard deviation of noise added to 
outputs of the mapping

Variability of RT 
distributions

Decision

Activation change 

€ 

′ x  j t( ) =
I j − β x p t( )

p ≠ j

∑ p r e − d e c i s i o n

−γx j t( ) p o s t − d e c i s i o n

 
 
 

  

β Rate of lateral inhibition Size of bow and set 
size effects in RT

C Decision criterion Overall RT and 
accuracy

D
Rate of decay of decision unit 
activation during inter-trial time 
D=exp(-γ.ITI).

Assimilation and 
shape of bow effect

Non-decision t0
Non-decision component of reaction 
times Overall RT

One parameter - the probability (P) of using the relative judgment process - 

affects both the selective attention and mapping stages, because the relative process 

replaces one of the anchor values and scales the output of the mapping stage. Another 

parameter - the standard deviation of noise (σM) added to mapping outputs - affects only 

the mapping stage. Finally, there are three decision stage parameters which have the 

same value for all decision units: the evidence accumulation threshold (C), the strength 

of competition between the decision units (β), and the decay rate (D) of decision unit 
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activation.

Benchmark Phenomena

There are a plethora of benchmark phenomena in absolute identification, 

concerned with both the choices made by participants and with the distribution of the 

times (RT) to make such choices. The parameters we use for the benchmark phenomena 

are based on the parameter values estimated from Lacouture’s comprehensive data set 

(see Table 3). Only one or two parameters needed to be adjusted from this baseline in 

order to fit each benchmark experiment. The σP (psychophysical noise) parameter was 

fixed at zero for all fits, except those for Braida and Durlach’s (1972) study, and Stewart 

et al.’s (2005) Experiment 1, since each of those designs contained some conditions 

with closely spaced stimuli. Where sequential effects were not at issue the local 

judgment process was not used (i.e., P=0), and only one parameter was estimated for 

the Poisson process in the selective attention stage: the ratio η, which largely determines 

overall accuracy. In those cases, effectively only eight parameters were required to fit 

the data, and where only choices (not RT) were considered this number dropped to six 

(without t0 and σM). Hence, the model fits are parsimonious and use parameter values 

that are consistent across several data sets from different paradigms. 

Stewart et al. (2005) provide a comprehensive review of benchmark phenomena 

concerning choices, but not RT, and demonstrate that their RJM accommodates the 

former. SAMBA accommodates all of the benchmark phenomena listed by Stewart et al. 

(2005), and others related to RT, as illustrated by our fits to comprehensive data sets 

below. Absolute models, from which SAMBA derives, have often been unable to 

account for sequential phenomena, such as assimilation and contrast, so SAMBA’s 
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accounts of those phenomena are covered in detail below. The following section on 

critical tests addresses data patterns that have previously been thought to rule out 

absolute models. 

Stimulus Spacing Effects

We fit SAMBA to two data sets showing stimulus spacing effects, Braida and 

Durlach (1972) and Lockhead and Hinson (1986). SAMBA accommodates the effects of 

unequal spacing as a natural consequence of its architecture, with the physical values of 

the unequal stimulus spacings providing direct, parameter free, constraints on the 

psychophysical front end. Braida and Durlach examined the effect of changing the 

physical range of the stimuli. They performed eight absolute identification experiments, 

each with 10 pure tones equally spaced in intensity (dB), with a different stimulus 

range, and hence spacing, in each experiment. The first experiment used a very small 

range, with the smallest and largest tones differing by only 2.3dB, so adjacent stimuli 

were sufficiently closely spaced to bring psychophysical noise into play. The remaining 

experiments steadily increased the range up to 54dB (see Figure 2). Two important 

effects were observed in these data. First, the overall accuracy, as measured by the 

amount of information transmitted from stimulus to response, increased as the range 

increased, but quickly reached an asymptote. Second, stimulus sensitivity, as measured 

by d’ per bel (B-1), showed the standard bow effect for large stimulus ranges, but almost 

no bow effect for small ranges. 
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Figure 2. Data from Braida & Durlach’s (1972) study (symbols) along with model fit 
(lines). Panel A shows how information transmitted increases to an asymptote as the 
stimulus range increases. Panel B shows how sensitivity per bel (B-1) decreases as range 
increases, with a corresponding increase in the depth of the bow effect.

The upper panel of Figure 2 shows how information transmitted increases from 

almost zero at the smallest range to an asymptote of about 1.9 bits at the largest ranges. 

The lower panels show how sensitivity per bel decreases with increasing range, while 
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simultaneously the depth of the bow effect increases. As illustrated by the dashed lines, 

SAMBA provides an accurate account of both phenomena. As for all the benchmark 

phenomena, the model’s fits were parsimonious, adjusting only some of a fixed set of 

reference parameter values used in fitting Lacouture’s (1997) data (see Table 3). For 

Braida and Durlach’s data, we increased the selective attention ratio to η=30, and 

included a psychophysical noise parameter, σP=0.96dB. The ratio η was increased to 

match the overall accuracy level of Braida and Durlach’s participants, and the 

psychophysical noise parameter was changed as it was fixed at zero for Lacouture’s 

(large-range) data. We are re-assured about the interpretability of model parameters by 

comparison with the estimates given by Marley and Cook (1984). Using the same data 

set, but using an asymptotic approximation of the selective attention model and decision 

cutpoints, Marley and Cook estimated σP=0.9dB and η=26.

Importantly, no parameters were adjusted between the various stimulus ranges to 

achieve these fits. Instead, SAMBA captures the effects of increased stimulus range 

solely through the action of psychophysical noise (σP). When stimulus separations are 

small, psychophysical noise causes confusion between adjacent stimuli, decreasing 

performance in the small-range conditions. As the stimulus range increases, the 

separation between adjacent stimuli rapidly grows larger than the imprecision 

introduced by psychophysical noise. Once the stimulus separation is greater than ~3dB, 

psychophysical variability (with a standard deviation of 0.96dB) becomes unimportant, 

and performance asymptotes. The reason that SAMBA predicts almost flat bow effects 

for small stimulus ranges is that the very high error rates for small stimulus separations 

is almost exclusively due to psychophysical variability, which is constant across the 

stimulus range.
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A similar limit on absolute identification performance relates to increases in the 

number of stimuli (N) rather than stimulus range. Pollack (1952) and Garner (1953) 

measured performance in terms of the amount of transmitted information (in bits) when 

the number of stimuli increased. Their most important observation was a limit – no 

more than about 2.8 bits of information were transmitted through responses, no matter 

how large the stimulus set size became. This limit is fundamental to absolute 

identification, and is incorporated at an appropriately fundamental level in SAMBA. 

The selective attention process has a limited capacity (the total average activity in all 

accumulators, η).

This capacity is independent of manipulations such as stimulus set size (N) or stimulus 

range (as in Braida & Durlach, 1972), and it determines the variability of the stimulus 

magnitude estimates. 

Lockhead and Hinson (1986) performed another benchmark experiment that 

manipulated stimulus spacing using three tones that differed in intensity. In the “equally 

spaced” condition, adjacent tones were separated by 2dB (at 58dB, 60dB and 62dB). In 

this condition, confusion matrices (i.e., the probability of each response conditional on 

each stimulus) were typical of other absolute identification data sets (see Figure 3, 

middle panel). Lockhead and Hinson created two other conditions by manipulating the 

spacing of the end stimuli. Compared with the equally-spaced condition, in the “low-

spread” condition the lowest stimulus was made much lower (54dB), and in the “high-

spread” condition the highest stimulus was made much higher (66dB). The confusion 

matrices for these two conditions are shown in the left and right panels of Figure 3 (cf. 

Stewart et al., 2005, Figure 7). The important effect is that the unchanged stimuli (the 

upper two stimuli in the low spread condition and the lower two stimuli in the high 
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spread condition) were more often confused in the low spread and high spread 

conditions than in the equally spaced condition. This poses a theoretical challenge since 

the relevant pair of stimuli do not differ physically between pairs of conditions, yet they 

are more often confused when the third stimulus is far away than when it is near. The 

dashed lines in Figure 3 show that SAMBA can explain these data more parsimoniously 

than previous accounts – with no parameter changes between conditions. The different 

predictions in the three conditions arise solely from differences in the stimulus spacing, 

set directly by the experimental design.

Figure 3. Data and fits for each of the three conditions in Lockhead and Hinson (1986). 
Each panel refers to a different experimental condition, from left to right: the lower 
stimulus is much lower (“low spread”); the stimuli are evenly spaced; and the upper 
stimulus is much higher (“high spread”). Each graph shows the probability of each 
response (abscissa) conditional on each stimulus (separate lines, see legend).

Only one parameter was changed from our fits to Lacouture’s (1997) data, 

η=10.5, in order to fit the overall accuracy of Lockhead and Hinson’s (1986) 

participants. SAMBA’s differential predictions for the three conditions are a natural 

consequence of the geometry of the model’s mapping solution. When the stimuli are 

equally spaced, the standard map applies, as described in Lacouture and Marley’s 

(1995) original formulation. However, when the stimuli are unequally spaced, the 

section of the mapping around the closely-spaced stimuli becomes compressed as 
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consequence of the mean activities in the selection attention stage being close, leading 

to poorer performance.

Sequential Effects on Errors

The two most studied sequential effects in absolute identification are 

assimilation and contrast (see: Ward & Lockhead, 1970; Holland & Lockhead, 1968; 

Mori & Ward, 1995; and Lacouture, 1997). Assimilation and contrast are sequential 

effects concerned with the distribution of incorrect responses among the possible 

responses (as opposed to effects concerned with the overall number of incorrect 

responses, which we examine later). Panel A of Figure 4 shows assimilation effects in 

detail for one benchmark data set, and panels B and C show both assimilation and 

contrast for that data set and another benchmark data set. 

Figure 4. Panel A shows assimilation effects in data from Ward and Lockhead (1970): 
the average error on trial N was positive when the stimulus on the previous trial (N-1) 
was large, and vice versa. Panels B and C show both assimilation (at X=1) and contrast 
(at X>1) in Ward and Lockhead’s and Holland and Lockhead’s (1968) data. When X=1, 
assimilation is shown by negative average errors when the previous stimulus was small 
(filled symbols) and positive average errors when the previous stimulus was large 
(unfilled symbols). The opposite pattern at longer lags (X>1) is the contrast effect. Solid 
lines are predictions from SAMBA.
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Assimilation means that errors tend to be made toward rather than away from the 

previous stimulus. In Figure 4, this is shown using the average error, which is the 

average difference between the correct response and the actual response. For example, if 

the correct response is #3 and the subject responds #5, the error is +2. Assimilation is 

evident at lag 1 (i.e., X=1 in B and C) – that is, average errors are positive (respectively, 

negative) when the preceding stimulus is large (respectively, small). Contrast is evident 

in the opposite pattern for longer lags (i.e., X=2-8 in B and C) – that is, the average 

errors are positive (respectively, negative) when the previous stimulus is small 

(respectively, large). In SAMBA assimilation is due to prior responses, through the 

starting point of the decision accumulators on the next trial, and contrast is due to prior 

stimuli, through attention allocated to the units selected by previous stimuli.

Creating a theory that simultaneously produces assimilation at short lags and 

contrast at longer lags is challenging: it must predict that responses are biased towards 

the previous response, but away from responses prior to that one. SAMBA 

quantitatively describes assimilation and contrast quite well, as shown by the solid lines 

in Figure 4. Also, in agreement with data SAMBA could never make the prediction that 

assimilation and contrast occur at the opposite time scales (i.e., lag=1 for contrast and 

lag>1 for assimilation). In general, models that set parameters separately for 

assimilation and contrast could make such a prediction, which is problematic (Roberts 

& Pashler, 2000). 

SAMBA cannot make this counterfactual prediction because it is constrained by 

the nature of its processing architecture. Assimilation is naturally predicted by passive 

decay in the ballistic accumulators. Between each trial, the activation values of the 

accumulators decay smoothly back towards a baseline level. This means that the 
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accumulator corresponding to the response made on the previous trial will begin the 

next trial with an advantage, and that advantage will also extend to nearby responses, as 

they typically have activations close to that of the winning response. The rate of decay 

in accumulator values during the inter-trial interval (parameter D) governs the size of 

assimilation effects, but the effects must always be assimilative, never contrastive. The 

model’s competitive response selection stage also restricts these effects to the previous 

trial only, never to earlier trials.

Similarly, SAMBA predicts both the direction and time course of contrast due to 

preferential treatment for recent stimuli in the selective attention process. The Poisson 

process that activates accumulators is biased towards incrementing the accumulator 

selected by previous stimuli, normally the most recent. The magnitude of the bias is set 

by parameter M, representing the proportion of activity redirected this way, and the 

duration of the bias is set by parameter K. The contrast mechanism directs extra activity 

to accumulators selected by recently presented stimuli, and this activity causes the 

expansion of magnitude estimates which include those locations. For example, suppose 

the previous stimulus was #2, and the current stimulus is larger, #3. The magnitude of 

the current stimulus is estimated by summing activity between stimulus #3 and the 

upper and lower anchors (giving the values ΣL and ΣU). The value ΣL includes extra 

activity in the accumulator selected by the previous stimulus (#2), and so the estimated 

magnitude of the current stimulus will be larger than it otherwise might be. A parallel 

argument shows that if the current stimulus is smaller than the previous stimulus, it is 

judged to be smaller than it otherwise might be. The resulting effect is contrast: stimuli 

are judged to be further away from recently seen stimuli, and this is the case whatever 

the relative locations of the current and previous stimuli. Such context effects make 
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adaptive sense for a participant tracking stimulus distributions that vary over time 

(Petrov & Anderson, 2005; Ward & Lockhead, 1970).

For the fits in panels A, B and C of Figure 4, we began with parameter values 

estimated from Lacouture’s (1997) data. To fit Ward and Lockhead’s (1970) data in 

Figure 4A and 4B, we changed one parameter that affects assimilation (decay in the 

decision stage, D=.2), one parameter that affects the magnitude of contrast effects 

(M=.75) and two that govern its time course (α=.9 and K=2). To fit Holland and 

Lockhead’s (1968) data in Figure 4C, we changed just the one parameter that affects 

assimilation (D=.17). 

Response Time Distributions

Even when response times are collected in absolute identification experiments, 

they are rarely subjected to the detailed analysis given to response choices. Previous 

research has identified several effects in mean response times analogous to effects in 

choice. These include bow effects, in which responses to extreme stimuli are faster than 

those to middle stimuli (e.g., Lacouture & Marley, 1995, 2004; Lacouture, 1997), and 

set size effects, where response times slow down as set sizes increase (e.g., Kent & 

Lamberts, 2005; Lacouture & Marley, 1995, 2004). Sequential effects on mean response 

times have also been observed due to response repetition (Petrov & Anderson, 2005) 

and assimilation (Lacouture, 1997). We illustrate SAMBA’s ability to accommodate 

these phenomena in mean RT later, in our fits to Lacouture’s data.

An even more stringent model test is provided by fitting full response time 

distributions. This has rarely been attempted in absolute identification, with a few 

exceptions, notably Kent and Lamberts (2005) and Lacouture and Marley (2004). We 

have taken data from all three of those studies, and fit them with SAMBA. We present 
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the fits to Kent and Lamberts’ data and Lacouture and Marley’s data here, and those to 

Lacouture’s data in our fits to comprehensive data sets below. Our analyses of the data 

from Kent and Lamberts’ Experiment 1 and Lacouture and Marley are particularly 

important, as we fit full response time distributions for individual subjects, without 

averaging. For Lacouture and Marley’s data we went one step further, and separately 

analysed data and model predictions for the RT distributions of both correct and 

incorrect responses (data for incorrect responses were not available for Kent and 

Lamberts).

Table 2. Parameter estimates for Kent and Lamberts (2005, Experiment 
1). For definitions and explanations of the parameters, see text and Table 
1. For units, see below the Table.

Stage Selective 
Attention Mapping Decision

Parameter η L a U a σM β b D C t0
 c

Subject 1 75.0 80 330 .227 .053 .0044 806 .076
Subject 2 33.3 80 372 .298 .067 .021 730 .175
Subject 3 46.7 80 330 .231 .094 .010 772 .051

Units: a. pixels; b. per second; c. seconds.

In their Experiment 1, Kent and Lamberts (2005) analysed full response time 

distributions for three individual subjects, which we summarize using quantiles. For 

each of the 30 distributions (three subjects by ten stimuli), we calculated the 10%, 30%, 

50%, 70% and 90% quantiles: that is, the response time below which 10%, 30%, 50% 

(i.e., the median), 70% and 90% of the data fall. These quantiles are shown along the 

bottom row of Figure 5, using three panels, one for each participant. The x-axis 

measures stimulus magnitude (from 1..10) and the five solid lines on each plot show 

quantiles calculated from the data. The upper and middle rows of Figure 5 show 

response accuracy and mean RT, respectively, also as functions of stimulus magnitude. 

The data show several standard effects. Firstly, there are clear bow effects, where 

responses to middle stimuli are slower and less accurate than those to edge stimuli. For 

the RT distributions, these bow effects are greatest in the slow tails (the 90% quantile). 
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The RT distributions are also positively skewed, with greater distances between the 70% 

and 90% quantiles than between the 10% and 30% quantiles. SAMBA captures all of 

these effects very well, and provides a good quantitative fit to the data. The parameters 

used to fit the model are shown in Table 2. The RT quantile and accuracy data allowed 

us to estimate the decision stage parameters, the overall accuracy parameter (η), and the 

anchor parameters (L and U). The published data contain no information on sequential 

effects, so we kept those parameters fixed at values estimated from Lacouture’s (1997) 

data (see Table 3). 

Figure 5. Top panels show accuracy, middle panels show mean RT, and bottom panels 
show RT quantiles for correct responses for each of three participants (columns) from 
Kent and Lamberts (2005, Experiment 1). Solid lines correspond to data and dashed 
lines to predictions from SAMBA. The five numbered lines in the lower panels 
correspond to the 10%, 30%, 50% (median), 70% and 90% quantiles of the RT 
distributions for the ten stimulus magnitudes. The reader may note that our mean RT 
scales are more compressed than in Kent and Lamberts’ figures. This compression was 
required to show the very longest RT quantiles in the figure – Kent and Lamberts do not 
plot the tails of the distributions in their bow effect plots.

Kent and Lamberts (2005) were unable to fit their model (ECGM-RT) directly to 

RT distribution data because “Although it might be possible in principle to estimate the 

properties of the residual-time distribution, the number of simulated trials needed to 
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produce consistent estimates proved prohibitively large.” (p. 297). Instead they fit only 

mean RT and accuracy. Kent and Lamberts’ then used representative parameter values 

from these fits to generate illustrative RT distribution predictions. The predictions had 

qualitative trends that matched their RT data, although they were not intended to 

provide close quantitative fits of the sort we provide in Figure 5. Kent and Lamberts 

also did not report any data, or model predictions, for RT distributions associated with 

incorrect responses. Hence, a complete comparison of SAMBA and ECGM-RT will 

have to await the development of suitable estimation techniques for EGGM-RT. 

However, a comparison of the top two rows of Figure 5 with the corresponding data in 

Figure 1 of Kent and Lamberts show that SAMBA’s fits just to mean RT and accuracy 

are comparable to those of the ECGM-RT, even though we did not directly optimize on 

those quantities. For comparison against possible future models for Kent and Lamberts’ 

data, we note that the χ2 values for SAMBA’s fits, summed across the ten stimuli 

separately for each participant, are: 291, 235 and 397 for the left, middle and right 

panels of Figure 5. These are similar to those obtained by fits of other RT models to data 

from binary choice tasks (e.g., Ratcliff et al., 2004; Ratcliff & Rouder, 1998). These χ2 

values were calculated in the usual manner for RT fits, based on quantiles estimated 

from the data, making them inappropriate for comparison with theoretical χ2 

distributions.

We were able to access the complete sequence of raw data for the single 

participant in Lacouture and Marley’s (2004) Experiment 2. We analysed the data from 

the standard absolute identification section of that experiment in which manual 

responses were used. We fit both the choice and RT data comprehensively with 

SAMBA, providing accurate fits of all benchmark phenomena including bow effects 
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and sequential effects. However, for brevity, we present only the analyses of RT 

distributions. There were 3103 correct responses and 574 incorrect responses that were 

either +1 or -1 response away from correct. Figure 6 shows the same five quantile 

estimates as used for Kent and Lamberts’ (2005) data, graphed against stimulus 

magnitude: the left panel show model predictions and data for the RTs of correct 

responses, the right panel for the RTs for the +/-1 errors. The parameters used to 

generate these fits are shown in Table 3.

Figure 6. RT quantiles for Lacouture and Marley (2004, Experiment 2). The five 
numbered lines correspond to the 10%, 30%, 50% (median), 70% and 90% quantiles of 
the RT distributions for all ten stimulus magnitudes. The left panel shows data and 
model predictions for correct responses, the right panel for errors where responses were 
either +1 or -1 away from correct (the undershoot errors have been flipped along the x-
axis before averaging with the overshoot errors, to preserve direction). The error bars 
beside each plot show average standard errors for each quantile, calculated by bootstrap, 
as in Ratcliff, Gomez and McKoon (2004).

SAMBA fits the shape of the RT distributions for both correct and incorrect 

responses, as shown by the relative spacing of the quantiles, and it accommodates 

changes in the shape and variance of the distribution with stimulus magnitude. The most 

serious misfit is to the slowest quantiles (90%), especially for incorrect responses to the 

largest (#8, #9) and smallest (#1, #2) stimuli; however, the data were quite noisy for the 
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incorrect responses especially in the slow tails of the distributions. The data reveal that 

the standard bow effect – longer RTs for middle than end stimuli – is evident in all 

quantiles, at least for correct responses. That is, both the fastest and the slowest parts of 

each RT distribution are slower for middle than end stimuli. In binary choice RT 

modeling (N=2), researchers have sometimes observed quite small effects in the 10% 

quantile, in the order of tens of milliseconds (e.g., Ratcliff, et al., 2004), and even these 

have proven theoretically challenging when attributed only to changes in the input to the 

decision process. The data from Lacouture and Marley (2004) and Kent and Lamberts 

(2005) show vastly larger bows in the 10% quantile, over 200msec. in magnitude. 

Table   3  . Parameter estimates for Lacouture (1997), Experiment 1 from Stewart et al. (2005), 
and Lacouture & Marley (2004). For definitions and explanations of the parameters, see text 
and Table 1. For units, see below the Table.

Stage Selective Attention Mapping Decision
Parameter σP α λb M K L U P σM β D C t0

 f

Lacouture 
(1997) - .75 6 

(η=24) .14 4 91c 420c .625 .22 .0307e .07 878 .265

Stewart et 
al. (2005) 1.9a .92 0.87 

(η=7) .36 3 10d (1) - - .11 - -

Lacouture 
& Marley 

(2004)
- .80 19 

(η=95) .06 3 86c 384c - .10 0.08e .02 535 .223

Units: a. Percentage of stimulus frequency; b. events per trial; c. pixels; d. percentage of stimulus range; e. per 
second; f. seconds.

SAMBA is able to account for large effects on the 10% quantile due only to 

changes in inputs (response strengths) to the ballistic accumulator stage. The ballistic 

accumulator stage is very tightly constrained – it has only three parameters that are free 

to vary when fitting response times (t0, C, and β) without constraint from other aspects 

of the data (e.g., D is fixed by assimilation). Even with this constraint, SAMBA 

accounts for the large bow in the 10% quantile, and importantly none of these 

parameters vary between different stimulus conditions. Further, the bow effect is 

predicted not by arbitrarily estimating response strengths for each stimulus, but by the 

way the response strengths are produced by the earlier stages of SAMBA. The original 
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ballistic accumulator model (Brown & Heathcote, 2005) is unable to accommodate such 

bows in leading edge RT without making post-hoc assumptions about input strength 

parameters, assumptions that are superceded by SAMBA’s architectural constraints.

Critical Tests of Absolute vs. Relative Models

In this section, we review some empirical results that have been construed as 

critical tests – that is, as providing qualitative evidence against absolute theories of 

absolute identification, or in favor of relative theories. Sequential effects on response 

accuracy have been claimed to provide critical evidence supporting relative accounts of 

absolute identification, and refuting absolute accounts. We examine several of these 

effects and illustrate SAMBA’s predictions. Each of the effects has a common theme, 

comparing responses made to stimuli that were preceded by very dissimilar stimuli with 

responses made to stimuli that were preceded by similar stimuli. The first effect we 

discuss was identified by Luce et al. (1982), and the second by Rouder et al. (2004). 

These findings suggested related effects, which we later examine further using data 

from Lacouture (1997) and Stewart et al.’s (2005) Experiment 1. First, however, we 

examine the effects of false feedback, which was claimed by Stewart et al. to provide a 

critical test between the class of relative judgment theories and the class of absolute 

judgment theories.

False Feedback

We first describe the fit of the revised SAMBA, then the nature of the revision – 

namely, the addition of a referent learning mechanism. Stewart et al.’s (2005) 

Experiment 2 involved a standard absolute identification task with equal-loudness tones 

of different frequencies. On just a few trials in each block, stimulus #3 was presented 
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but – after making a response – the participant was told that it was stimulus #4. This 

misleading feedback caused the participants to overestimate the magnitude of the 

stimulus that followed, as shown in the left panel of Figure 7 by the large positive error 

for trials following misleading feedback. Note that Stewart et al. reported their data 

broken down by whether the response on the previous trial was incorrect or correct. 

However, both RJM and SAMBA predict the same effect whether the previous response 

is correct or incorrect, and the effect of that variable in that data was small – so Figure 7 

presents the results only for trials following a correct response. 

Figure 7. The left panel shows the effect of misleading feedback, with data taken from 
Stewart et al.’s (2005) Experiment 2. Average error was close to zero when correct 
feedback was given on the previous trial – subjects performed the task properly. After 
misleading feedback, participants overestimated the magnitude of the current stimulus. 
Vertical bars show standard errors. The right panel illustrates the feedback mechanism 
in SAMBA. The three rows of dots show the positions of the long-term referents for 
each stimulus, for three trials. See text for explanation.

 Stewart et al. (2005) considered this experiment to be a critical test of absolute 

vs. relative theories. As explained in their Table 8, relative theories (including RJM) 

predict an average error of +1 following the misleading feedback in Stewart et al.’s 
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experiment, and zero average error following standard feedback. In contrast, Stewart et 

al. concluded that existing absolute (“mapping”) theories predict a very different 

pattern: +1 errors for correct feedback following an error response, or for misleading 

feedback following a correct response, and zero error otherwise. These predictions 

clearly do not accord with the data. However, they also do not accord with the 

predictions from the SAMBA model, which fit the data quite well. Figure 7 shows the 

predictions from the RJM as cross symbols and the predictions of the SAMBA model as 

solid circles. SAMBA’s predictions were obtained using the same parameter values we 

used in fitting the data of Stewart et al.’s (2005) Experiment 1 (see Table 3). RJM’s 

predictions match the data in a qualitative sense, with zero average error following 

correct feedback and large positive errors following the misleading feedback, but they 

substantially overestimate the magnitude of the misleading feedback effect. SAMBA’s 

predictions also match the data in the qualitative sense. Moreover, their quantitative 

agreement with the data is much better than that of RJM. Importantly, the predictions 

from SAMBA are unaffected by the inclusion or exclusion of the relative mapping 

process. These results indicate that a purely absolute model can account for the effects 

of misleading feedback at least as well as a relative model. 

We incorporated the effects of feedback into SAMBA in a simple and 

constrained manner, by partially developing a referent learning algorithm of the sort 

discussed in detail by Petrov and Anderson (2005). On each trial, the SAMBA model 

produces an estimate of the stimulus magnitude – the ratio ΣL/(ΣL+ΣU). The mapping 

stage of the model operates using long-term memories for the mean values of these 

magnitude estimates for each stimulus, with a value of zero given to the lower anchor 

(L) and a value of one to the upper anchor (U). We assumed that feedback helps the 
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observer maintain these long term referents, as illustrated in the right-hand panel of 

Figure 7. We provide a simple physical analogy to a spring system, as an intuitive 

description of the system; mathematically the adjustment is made in a simple linear 

fashion11.

The top row of dots in the figure show the long term stimulus referents for a 

hypothetical experiment with N=6 stimuli. Suppose stimulus #4 is presented, shown by 

the larger filled circle in the top row, and this presentation produces a magnitude 

estimate of .62, shown by the small cross. The observer is then provided with correct 

feedback, shown by the ring around stimulus #4. Feedback allows the referents to be 

updated for the following trial (second row) so that the referent for stimulus #4 is 

moved to match its observed magnitude estimate (.62). The long-term referents for the 

all the stimuli move as if they are locations on a linear spring, whose ends are fixed at 

zero and one. The point on the spring corresponding to the last magnitude estimate (.62) 

is deflected so that it aligns with the expected magnitude estimate corresponding to the 

feedback (stimulus #4). As in a spring system, this deflection causes compression of 

locations on one side and expansion on the other, with the ends remaining fixed. On the 

second trial (second row) stimulus #3 is presented, producing a magnitude estimate of .

5. False feedback now suggests that this was actually stimulus #4, so the long-term 

referents are adjusted to make the referent for stimulus #4 match the observed estimate 

(.5), shown by the arrow. In this case, this causes significant compression on the left 

side and significant expansion on the right side, again with the ends remaining fixed. 

The example from the right panel of Figure 7 makes clear the reason for 

SAMBA’s good fit to the data from the left panel of Figure 7. First, adjustments to the 

11 If we let Yi be the long term referent for stimulus i, then given a magnitude estimate 
of z and feedback indicating that this was stimulus s, the referents for i≤s are adjusted 
according to Yi→zYi/Ys, and for i>s according to Yi → 1-[(1-z)(1-Yi)/(1-Ys)].
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long-term referents are, on average, smaller when they follow correct feedback than 

when they follow false feedback. This is because, when there are very few misleading 

feedback trials, the stimulus magnitude estimate is typically close to the “correct” value 

stored as the long-term referent, so only small adjustments are required when correct 

feedback is given. On average, when false feedback is given, much larger adjustments 

are required, causing greater subsequent errors (and corrections once correct feedback is 

given again). A referee wondered whether the feedback mechanism makes SAMBA into 

a more relative (than absolute) model. It is true that the mechanism for updating long 

term referents implies that information from recently-presented stimuli is used in each 

judgment, but this does not make the model “relative”, once again illustrating the 

problems with separating absolute from relative models; all contemporary models 

include elements of both. Even with the referent learning mechanism, judgments in 

SAMBA are fundamentally absolute, as each stimulus is judged against a set of long-

term referents and anchors. 

One assumption of the referent learning mechanism that may require 

development concerns the magnitude of updates. We assumed that the long-term 

referent identified by feedback is moved all the way to the location of the stimulus 

magnitude estimate. A more realistic implementation may be softer, with the long term 

referents moving only some fraction of the way. We did not adopt this approach here 

because it would have required estimation of a learning rate parameter that specifies the 

relative weights given to the value of the long term referent and the magnitude estimate 

in the update rule. Such extra flexibility was not required by SAMBA to obtain a 

reasonable fit to the data.

Further experimental investigation of false feedback effects would also be useful 
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as SAMBA and RJM make quite different detailed predictions. The RJM predicts the 

same effect of misleading feedback across the entire range – when false feedback of #4 

is given to stimulus #3, the RJM predicts a +1 average error on the following trial, no 

matter whether stimulus, say, #1 or #10 is presented (see, e.g., Stewart et al.’s Table 8). 

Also, RJM predicts that misleading feedback has no effect on trials after the 

immediately-following one. On the other hand, SAMBA predicts the effect of 

misleading feedback will decrease with the difference between the feedback and the 

magnitude of the next stimulus – because adjustments to the long term referents are 

smaller away from the feedback than near. SAMBA also predicts small effects of 

misleading feedback on trials after the trial that immediately follows misleading 

feedback, because the long-term referents remain affected by feedback until corrected 

by further trials. However, at the level of analysis permitted by Stewart et al. (2005)’s 

Experiment 2, the effect of false feedback is clearly not a critical test of the class of 

relative vs. absolute judgment theories, and quantitatively it favors SAMBA over the 

RJM.

Sequential Effects

Luce et al. (1982) manipulated the difference between stimuli presented on 

successive trials (“step size”) in four conditions (Figure 8). One condition was a 

conventional 11-stimulus absolute identification design where the stimulus sequence 

was random – any stimulus could follow any other, with equal probability. This 

“random step” condition resulted in typical absolute identification data patterns, shown 

by the accuracy and d’ graphs in the third column of Figure 8. Luce et al. also used two 

“small step” conditions, with constrained differences in the magnitude of successive 

stimuli. In the “small step 3” condition successive stimuli were always very similar: for 
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example, when stimulus #3 was presented, the next stimulus could only be #2, #3 or #4. 

In the “small step 5” condition successive stimuli were moderately similar: for example, 

if stimulus #3 was presented the next stimulus was constrained to be one of #1, #2, #3, 

#4, or #5. Data from the two “small step” conditions are shown in the left two columns 

of Figure 8. Finally, Luce et al. used a “large step” condition in which stimuli were 

always followed by very dissimilar stimuli. For example, when stimulus #3 was 

presented, the next stimulus could only be one of stimuli #7, #8 or #9. These data are 

shown on the right of Figure 8.

Figure 8. Response accuracy (top row) and sensitivity (bottom) from Luce et al. (1982), 
with fits of SAMBA (shown by dashed lines). The top left columns show conditions 
constrained to have small differences between successive stimuli. The third column 
shows a standard condition (random differences). The right column has data from a 
condition where differences between successive stimuli were constrained to be large.

The manipulation of step size had large effects on response accuracy, shown in 

the top row of Figure 8. The random step (standard) experiment resulted in the poorest 

performance, while the small step 3 condition resulted in the best performance. The 

small step 5 condition gave better performance than did the large step condition. Some 

of these effects could be a result of manipulating the number of possible responses, 
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which may have affected accuracy only via response biases. To check this, Luce et al. 

(1982) also examined their data using a sensitivity measure (d’, bottom row of Figure 8) 

designed to take into account response bias effects. The d’ analysis showed that the 

small step conditions produce greater sensitivity than the large step and random step 

conditions, but also showed that sensitivity in the large step and random step conditions 

was quite similar, indicating that the accuracy difference between these conditions was 

mostly due to response bias.

These data may initially be imagined to refute absolute theories, because they 

appear to implicate the previous stimulus in the decision process. Nevertheless, 

SAMBA accurately captures the patterns of Luce et al.’s (1982) data, and does so 

without inclusion of the relative component. SAMBA correctly predicts the ordering of 

the conditions in both response accuracy and sensitivity (d’) and also provides a good 

quantitative description of the data. To fit the data from Luce et al., we added two 

structural assumptions that reflect the nature of the experiment, and we varied three 

parameters. Importantly, however, we did not vary any parameters across the four 

experimental conditions, so different predictions for the different conditions represent 

purely structural effects. We began with parameters estimated from Lacouture’s (1997) 

data and changed the two anchor locations (L=35.5dB and U=90.5dB) and the passive 

decay parameter (D=.01) to capture the asymmetry and shape of the observed bow 

effects. We also increased the rate of decay for accumulators (α=.56) in the selective 

attention stage to match the sequential effects and overall accuracy (η=12.8) for Luce et 

al.’s data. 

The two passive decay parameters (α and D) were estimated to have much 

smaller values in Luce et al.’s data than in our fits to other comprehensive data sets, 
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presented later. This difference raises an interesting speculation, and illustrates the 

testable nature of SAMBA’s architectural assumptions. We have specified the decay 

parameters in units of trials, rather than real time – each parameter describes how much 

activation remains after passive decay for the period of one trial. When adjusting 

parameters from the fits to Lacouture’s data to fit Luce et al’s data, each decay 

parameter was reduced by approximately squaring it: from α=.75 for Lacouture, and 

α=.752=.56 for Luce et al.’s data; and D=.07 for Lacouture, and D=.072=.005 for Luce 

et al’s data. This large change can be parsimoniously interpreted as if the rate of passive 

decay is constant in real time, if the trial-to-trial interval were twice as long in Luce et 

al.’s study as in Lacouture’s. This hypothesis receives some support from the 

methodological details of each study: the duration of Lacouture’s trials was 1.1sec, plus 

response time; the duration of Luce et al.’s trials was 1.5-2sec, plus the slowest of the 

three subjects’ response times.

Two structural assumptions were made to accommodate the stimulus sequences 

in Luce et al.’s (1982) experiment. Firstly, we assumed that participants limited their 

response set; ballistic accumulators corresponding to any responses other than the 

allowed responses received no input. For example, suppose stimulus #4 was presented 

on the previous trial. In the small-step-3 condition, the only allowed responses are #3, 

#4 and #5, so all other response accumulators were given zero input. The second 

structural modification instantiated a change in the frame of reference for absolute 

judgments, via a change in the distribution of activation in the Poisson process. In the 

small-step-3 and small-step-5 conditions, we assumed that attention was only directed at 

that range of the accumulators corresponding to allowed responses on the next trial. 

That is, we assumed that participants were able to focus in their attention on the 
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appropriate sub-range of stimuli on the next trial. 

The second structural assumption parallels suggestions made by Weber et al. 

(1977), Luce et al. (1982) and Nosofsky (1983) that a roving attention band is moved to 

focus on appropriate ranges, but that this movement is sluggish. The sluggishness of the 

attention band is manifested in participants’ inability to refocus their attention on units 

corresponding to possible stimuli, particularly in the large-step condition. This can be 

interpreted in SAMBA as due to the relatively slow decay of activity in the selective 

attention stage, which has a half-life of one trial (around five seconds) in these fits. Our 

explanation of these data also fits with data from Nosofsky’s Experiment 1. Nosofsky 

ran a similar experiment to Luce et al., but included a discrimination condition in which 

all 11 stimuli were presented in random order, as in the random condition of Luce et al., 

but the participants’ task was simplified. They were only required to judge whether the 

current stimulus was the same as, smaller than, or larger than, the prior stimulus. 

Nosofsky observed similar performance in both the discrimination condition and the 

standard (random) condition for the subset of trials that met the small-step-3 constraints, 

with that performance poorer than in the actual small-step-3 condition. These results 

support the idea that improved performance in the small-step conditions is due to more 

than just the constrained response set in those condition.

A second sequential effect that appears to support relative accounts over 

absolute accounts was reported by Rouder et al. (2004, see also Brown et al., 2007, and 

Stewart, 2007). Rouder et al. graphed the probability of a correct response conditional 

on the signed difference between the current and previous stimulus. The filled circles in 

the left panel of Figure 9 show the results of Rouder et al.’s analysis applied to data 

from Lacouture (1997). The data show high accuracy for repeated stimuli at the centre 
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of the plot, corresponding to zero difference between successive stimuli. The accuracy 

bonus falls away as the difference between successive stimuli increases, then rises again 

at the edges of the plot. The rise at the edge of the plot corresponds to improved 

accuracy for an extremely small stimulus that was preceded by an extremely large 

stimulus, or vice versa.

Figure 9. The filled symbols show response accuracy (left panel) and mean RT (right 
panel) for data from Lacouture (1997) as a function of the difference between stimuli. 
The graph for Prob. Correct. has a local peak at and near the center, signifying an 
advantage when successive stimuli are similar. The extremes of each graph also show 
advantages. The graph for Mean RT has a parallel dip. Error bars show normal 
standard errors based on the SD of each point over participants, and dashed lines 
show predictions from SAMBA.

The dashed line in the left panel of Figure 9 shows that SAMBA provides a 

reasonable fit to the data. The model captures the accuracy advantage for repeat and 

near-repeat stimuli (graph center) as well as the increased accuracy for very large 

stimulus changes (graph ends). The extreme ends of the figure are influenced only by 

responses for the very smallest and very largest stimuli, which are accurate in SAMBA 

because they are near the ends of the selective attention range. Increased accuracy for 

repeated stimuli (center of the graph) is caused by two mechanisms in SAMBA. Firstly, 
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the assimilation mechanism causes repeated responses to have a slight advantage, as the 

ballistic accumulator associated with the previous response begins the next trial with a 

higher activation. Secondly, when fitting Lacouture’s (1997) data we made partial use of 

the relative mapping process, which operated on P=62.5% of decisions. The relative 

mapping process operates by judging the presented stimulus relative to the magnitude 

estimate of the previous stimulus and the relevant one of the two long-term anchors. 

The result is increased accuracy for repeat and near-repeat stimuli, as they become 

effectively judged against a very nearby anchor associated with the prior stimulus. Our 

model fits to Lacouture’s data set do not distinguish whether individual participants 

used the relative process for 62.5% of their decisions, or 30 out of 48 of participants 

always used the relative process, and 18 out of 48 never used it, or some combination of 

the two. Individual data sets were too small for us to carry out individual fits that would 

reliably differentiate these possibilities.

The right panel of Figure 9 shows that SAMBA captures a similar, but inverted, 

effect in mean response time. SAMBA’s predictions (dashed lines) capture the M-

shaped quantitative trend, and match the direction of the asymmetry in the data (faster 

responses on the right than left). However, this fit fails to predict sufficiently fast RTs 

near the extreme ends of the graph. The failure is mostly due to unusually fast responses 

at the ends of the range, especially to the largest stimulus in the set (#10). These data 

points are discussed in detail later.

Figure 9 shows that repeated stimuli enjoy large advantages, and that near-

repeats (such as +/-1 rank-order differences) enjoy smaller advantages. A related 

question concerns the duration of the advantage for repeated stimuli. Figure 10 shows 

mean accuracy and RT as functions of how many trials have elapsed since the current 
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stimulus was last presented. A stimulus repeat corresponds to no intervening stimuli 

(i.e., x=0). As before, repeated stimuli generate more accurate and faster responses. 

Figure 10 shows that these advantages do not extend further than immediate repeats. 

With just one intervening stimulus (e.g., the stimulus sequence …. #3, #4, #3, ….) 

response accuracy and latency are at baseline levels. The dashed lines in Figure 10 show 

that SAMBA provides a quantitatively accurate account of both the advantage for 

repeated stimuli (lag 0), and the lack of advantage for other lags. The locus of this 

account in the model is as described for Figure 9 – a combination of passive decay in 

the ballistic accumulator stage and partial use of the relative mapping process. Note that 

SAMBA overestimates total RT in the left panel of Figure 10 – once again, this was 

caused by unusually fast responses in the data to just one stimulus (#10), discussed later.

Figure 10. The symbols show response accuracy (left panel) and mean RT (right panel) 
for data from Lacouture (1997). X-axis shows the number of trials that have intervened 
since the current stimulus was last presented. Error bars show normal standard errors 
based on the SD of each point over participants. The dashed lines show predictions 
from SAMBA.

An effect similar to those described by Luce et al. (1982) and Rouder et al. 

(2004) was also observed by Stewart et al. (2005). Stewart et al.’s Experiment 1 was a 

standard absolute identification task using approximately equal-loudness tones of 
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different frequencies, while also manipulating set size and stimulus spacing (we analyze 

these data in detail below). Performance was much better for stimuli that were close to 

the stimulus presented on the previous trial. Figure 11 reproduces Stewart et al.’s figure 

26, and graphs accuracy against stimulus magnitude. The graph has separate lines for 

those stimuli that were preceded by a close stimulus (either an identical stimulus, or +/-

1 rank order difference) and by a far stimulus (all others). This analysis is similar to 

Luce et al.’s “small-step-3” condition, and also is equivalent to taking the central three 

points in Rouder et al.’s analyses, or in our Figure 9. 

Figure 11. Accuracy graphed separately for stimuli that were preceded by “near” 
stimuli (either repeats, or +/-1 rank order difference) vs. stimuli that were preceded by 
“far” stimuli (more than one rank different). The solid lines with filled circles are data 
from Stewart et al.’s (2005) Experiment 1. The dashed lines are predictions from 
SAMBA, using parameters discussed below.

In contrast to the results of Rouder et al. (2004), Luce et al. (1982), and 
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Lacouture (1997), Stewart et al. (2005) observed a very large performance bonus for 

stimuli that were close to the preceding stimulus –accuracy nearly doubled, from 39% to 

72%, and response sensitivity (d’, not shown) more than tripled, from 0.78 to 2.7. By 

contrast, Luce et al. found a d’ advantage of about 1.1 units, Lacouture found a d’ 

advantage of only 0.25 units, and Rouder et al. observed an increase in accuracy of only 

about 12%, after their participants were well practiced. Further, in an analysis almost 

identical to Stewart et al.’s, Purks, Callahan, Braida and Durlach (1980) found no 

significant difference in d’. The predictions from SAMBA are shown in Figure 11 by 

dotted lines. SAMBA provides a reasonable account of the advantage for repeat and 

near-repeat stimuli, but cannot quite predict the very large bonus observed in the data: 

SAMBA predicts that response to repeated and near-repeated stimuli are about 1.5 times 

as accurate as other stimuli, whereas the data show an effect of nearly double accuracy. 

It seems that SAMBA is sufficiently constrained that it cannot quite predict the 

extraordinarily large bonus for repeated stimuli observed in Stewart et al.’s Experiment 

1. In particular, SAMBA does not include a process specific to the identification of 

repeated stimuli, which RJM does.

Our preceding analyses suggest that the effects of stimulus repetitions require 

further investigation, both theoretically and empirically. On the empirical side, previous 

research has observed a very wide range of effect sizes, from no significant difference 

(e.g., Purks et al., 1980), to extremely large effects on response accuracy and d’ (Stewart 

et al., 2005). Numerous data sets seem to show small but reliable, effects, for example: 

Kent and Lamberts (2005); Luce et al. (1982); Rouder et al. (2004); Petrov and 

Anderson (2005); and our analyses of Lacouture’s (1997) data in Figures 9 and 10. Two 

data sets show large effects: Neath and Brown (2006), and Stewart et al. (2005). The 

217



causes of such wide variability in effect size observations are unclear, but may be due to 

the stimuli chosen in each experiment. The experiments that demonstrated very large 

effects of stimulus repetition were the only ones to use equal-loudness tones of differing 

frequency. The identification and discrimination of tone frequency may be rather 

different than for other stimuli due to the existence of critical bands (Green & Swets, 

1966, Table 10.1, p.280). These critical bands may allow participants to perform very 

accurately on stimulus repetitions, effectively using a more powerful than usual sensory 

memory. Green and Swets further indicate that the width of the critical bands for 

frequencies around those used by Stewart et al. are in the same range as some of the 

frequency separations in Stewart et al.’s (2005) experiment.

Our review of the critical tests of absolute vs. relative theories of absolute 

identification has shown that almost all of the data can be accommodated by a purely 

absolute version of SAMBA. The only phenomenon that implicates a relative judgment 

mechanism relates to improved accuracy for repeat and near-repeat stimuli, observed in 

analyses of Lacouture’s (1997) data and Stewart et al.’s (2005) Experiment 1. These 

analyses suggest that the detection of repeated stimuli requires further study, both 

empirical and theoretical. On the empirical side, it appears that the detection of repeated 

stimuli is particularly privileged when stimuli are defined by frequency, as opposed to 

loudness or line length, for example. As for theory, SAMBA’s account of response 

repetition is clearly incomplete, and deserves further development. Preliminary work 

suggests that expanding SAMBA to include a more detailed account of learning, by 

continual adjustment of the long-term referents held in memory, helps to accommodate 

the effects of stimulus repetition without assuming that judgments are relative. We 

return to this point in the General Discussion.
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Comprehensive Data Sets

In this section we fit two data sets – from Lacouture (1997) and Stewart et al. 

(2005) – in great detail. Together, these two data sets exhibit almost all of the 

benchmark findings in absolute identification. Hence, our analyses of these data sets test 

whether SAMBA is able to simultaneously accommodate the various patterns in 

absolute identification data with fixed parameter values. We use two data sets because 

they provide complimentary coverage of the domain. Lacouture’s data (Session 1 from 

his Experiments 2..5) were collected using N=10 lines as stimuli, and include accurate 

measurements of response time for each decision. Stewart et al.’s data, taken from their 

Experiment 1, were collected using equally-loud tones of differing frequencies as 

stimuli. This experiment did not include measurement of response times, but did have 

two important stimulus manipulations: the number of tones in the stimulus set was 

varied (N=6, 8, or 10), and the spacing of the tones was either “wide” (each tone was 

12% higher in frequency than the one below) or “narrow” (6% spacing). 

In both Lacouture’s (1997) and Stewart et al.’s (2005) experiments there were 

many participants, each of whom contributed around 800 data points each. Our 

modeling of each data set stressed parsimony, with each fit using a fixed set of 

parameters (different for the two data sets) to generate all model predictions for data 

averaged across participants. This approach provides stringent model tests. For 

example, in Stewart’s data, set size and stimulus spacing effects must be generated by 

the model’s architecture, rather than by different parameter settings. Our fits to these 

data sets include the effects of stimulus magnitude, set size, and stimulus spacing on 

response measures including choice probabilities, sensitivity (d’) and full RT 

distributions. We also examine sequential effects on both choices and RT. This is the 
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first time that an absolute identification model has had the explanatory range to be 

tested so comprehensively. 

Parameter estimates for the two data sets are shown in Table 3. For Stewart et 

al.’s (2005) experiment no parameters were changed to model the different set size 

conditions or the different stimulus spacings. Instead, the predictions of SAMBA 

change with set size and stimulus spacing simply because the stimulus representations 

reflect the physical elements of the experimental design. Since Stewart et al.’s data did 

not contain RT measurements, the parameters of the ballistic accumulator stage of 

SAMBA were not estimated (except for the assimilation parameter, D, which can be 

estimated from choice data). As a result, there were seven model parameters for Stewart 

et al.’s data and eleven for Lacouture’s (1997) data. We do not claim that these 

parameter estimates are optimal. No formal optimization was performed and only a 

relatively course grid of parameter estimates were tried. Better fitting solutions likely 

exist, but the values displayed in Table 3 provide a sufficiently good account.

Data from Lacouture (1997)

Several phenomena observed in Lacouture’s (1997) data have already been 

discussed in the earlier section on “Critical Tests” because they featured in our attempts 

to distinguish absolute from relative models of absolute identification. These 

phenomena included sequential effects on response accuracy, decision sensitivity, and 

mean RT, as well as the effect of response repetition on accuracy and mean RT. Five 

more phenomena are discussed in this section, including: the effects of stimulus 

magnitude on response accuracy, mean RT and RT distributions, and assimilation and 

contrast. For all graphs, we display both data (using symbols) and model fits (using 

dashed lines). 
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Figure 12 shows response accuracy as a function of stimulus magnitude. This is 

the standard bow effect plot, and SAMBA accounts for the bow shape and the 

asymmetry evident in the data, except for the largest stimulus. SAMBA posits that 

asymmetry is due to unequal placing of the stimulus anchors, with the lower anchor (L) 

placed much closer to the smallest stimulus than the upper anchor (U) is to the largest 

stimulus. When fitting Lacouture’s (1997) data, we estimated the lower anchor for the 

selective attention process at 91 pixels – just one pixel smaller than the smallest 

stimulus – and the upper anchor at 420 pixels – 100 pixels larger than the largest 

stimulus. The asymmetry in the anchor placements (both in pixel and log units) 

accounts for the strong asymmetry in the data: responses to smaller lines were faster and 

more accurate than responses to larger lines. SAMBA is the first absolute identification 

model that accounts for asymmetry, which is often observed in data but has been almost 

uniformly ignored. However, SAMBA’s account is still quite constrained and cannot 

accommodate one unusual aspect of the asymmetry in Lacouture’s data – namely, 

responses to line #10 are both very accurate and extremely fast relative to other 

responses.

Figure 12. Accuracy and mean RT as functions of the ordinal stimulus magnitude (x-
axis) for data from Lacouture (1997) and SAMBA model fits. The vertical lines on 
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each data symbol show normal standard errors based on the SD of each point over 
participants.

Figure 12 shows that SAMBA provides a good account of differences in mean 

RT for the different stimulus magnitudes in Lacouture’s (1997) data. Figure 13 extends 

this analysis in two ways – using full RT distributions, rather than just means, and 

showing both correct and incorrect responses. Figure 13 uses a similar format to Figure 

5 (for Kent & Lamberts’, 2005, data). The left panel shows correct responses (7324 data 

points) and the right panel shows data for errors of +1 response (2072 data points) and -

1 response (3407 data points). Data for +1 and -1 errors were too noisy to present 

separately so we have averaged them together, after flipping response magnitudes 1..10 

for the -1 errors.

Figure 13. Response time distributions from Lacouture (1997), for correct responses 
(left panel) and for errors of +1 or -1 response category (right panel). The lines 
numbered 1..5 in each panel show 10%, 30%, 50%, 70% and 90% quantiles estimated 
from the data, for each of the ten stimulus magnitudes (x-axis). Dashed lines show 
predicted quantiles from SAMBA. Bars to the left of each plot show average standard 
errors for each quantile, calculated by bootstrap from the raw data (see e.g., Ratcliff, 
Gomez & McKoon, 2004). Note that standard errors are larger for the longer quantiles, 
and for the incorrect response data.

SAMBA accurately predicts RT distributions for the correct responses apart 
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from overestimating RT for the largest stimulus (as discussed regarding mean RT). The 

model captures the shape of these RT distributions, as illustrated by the relative spacing 

of the quantiles, and the variance of the distributions, as illustrated by the absolute 

spacing of the quantiles. SAMBA also captures the changes in shape and variability 

across the range of stimulus magnitudes. For the incorrect responses, SAMBA provides 

a qualitatively reasonable account, but shows systematic quantitative errors. For 

example, SAMBA accurately matches the entire RT distributions for errors on the 

smallest and largest stimuli and for all stimuli for the middle quantiles. However, it 

predicts too large a spread in the tails (i.e., 10% and 90 % quantiles) of incorrect RT 

distributions for the middle range of stimuli.

Figure 14 shows assimilation and contrast effects in Lacouture’s (1997) data, 

along with model fits. For this figure, we use the same layout as Figure 4 (see also Ward 

& Lockhead, 1970, and Stewart et al., 2005), and show SAMBA’s predictions using 

solid lines, rather than the usual dashes. The plot shows response biases, measured as 

average errors. For example, if stimulus #5 is presented, the error will be zero if the 

participant responds correctly with response #5, but will be +2 if the participant gives 

response #7, and -1 if the participant gives response #4. The graph shows average errors 

on Trial N+X, for X=1,2,…,8, conditional on the magnitude of the stimulus presented on 

Trial N. Filled symbols show average error when the preceding stimulus was small, 

open symbols show the error when the preceding stimulus was large. 
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Figure 14. Average error as a function of preceding stimulus (different symbols – see 
legend) and number of trials since that stimulus (x-axis) from Lacouture (1997). 
Assimilation occurs to stimuli presented one trial previously: Errors are positive at x=1 
for large previous stimuli (filled symbols), and negative for small previous stimuli (open 
symbols). At longer lags (x=2..5) contrast is observed, i.e., the opposite pattern.

The characteristic pattern of assimilation at lag=1 and contrast at lag>1 was 

observed in these data. That is, when a large stimulus was presented just one trial 

previously errors were positive, and vice versa for small stimuli. When a large stimulus 

was presented several trials previously (X=2..8), average error was negative, and vice 

versa for small stimuli. SAMBA successfully fits the qualitative pattern of assimilation 

at short lags and contrast at longer lags. In Lacouture’s (1997) data, contrast is strongest 

at lag=3, while in many other data sets (including Ward & Lockhead, 1970, and Holland 

& Lockhead, 1968) contrast is strongest at lag=2 and decays monotonically thereafter. 

To fit the peak at lag=3 observed in Lacouture’s data, we chose K=4, so the re-direction 

of attention in the selective attention stage lasts for four trials. 
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Data from Stewart et al.’s (2005) Experiment 1

Stewart et al.’s (2005) Experiment 1 provides a valuable resource as it allows a 

direct comparison between the goodness-of-fit to choices of two competing models. 

Stewart et al. provide graphs of many observed data patterns, and simultaneously 

provide predictions from their RJM. By fitting SAMBA to the same data patterns, we 

can compare the two models, although we are unable to compare them on aspects of 

absolute identification that the RJM does not cover (such as RT). Comparing goodness-

of-fit is complicated by the varied nature of the phenomena we examine, including 

response probabilities, average biases, and sensitivity measures. 

In the absence of an agreed statistical model, we can do no better than compare 

how closely the predicted values from each model (RJM and SAMBA) match the 

observed values. To do this, we use root mean squared error (RMSE). The magnitude of 

RMSE is, of course, without statistical meaning. Nevertheless, the relative size of 

RMSE for the two models is informative. The most intractable problem with this 

approach is model complexity – it is possible for a false model to more accurately fit 

observed data than a true model, if the false model is the more complex of the two. 

Stewart et al. used eight free parameters to fit the RJM to the data from their 

Experiment 1, whereas the fits of SAMBA have only seven, suggesting that RJM is 

more complex. Although the number of parameters does not give a complete measure of 

model complexity, this difference indicates that complexity is unlikely to explain cases 

where SAMBA provides an equal or better fit than RJM12. To foreshadow our results, 

we found that both SAMBA and the RJM provide quite good fits to the data, which does 
12  We calculated RMSE values by reading data from the published graphs in Stewart et al. (2005), and 

separately comparing the predictions of the RJM to the data from the wide and narrow stimulus 
spacing conditions. We took the same approach for calculating RMSE values from SAMBA’s 
predictions. Slight differences in the RMSE values may arise if a different approach were used (e.g., if 
one compared with the average of the wide and narrow data conditions, or if one differentially 
weighted the different set sizes).
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not include response times. 

The stimuli for Stewart et al.’s (2005) Experiment 1 were equal-loudness tones 

of different frequencies. In the “narrow” condition, the tones were separated by 6% 

(e.g., the lowest tone was 768.7Hz, the next tone was 6% higher at 814.8Hz, and so on), 

while in the “wide” condition tones were separated by 12%. Set size was manipulated 

independently of stimulus spacing, by using either all N=10 tones, or just the central 

N=8 or N=6. Both set size and stimulus spacing were manipulated between subjects. 

The data do not include response times, so several of SAMBA’s parameters can be 

omitted. Below, we compare SAMBA’s predictions with predictions from Stewart et 

al.’s RJM. As presented in Stewart et al. (2005), the RJM does not accommodate 

asymmetry in the data (i.e., more accurate responses to very small than very large 

stimuli, or vice versa), although SAMBA handles such data naturally, as in our fits to 

Lacouture’s (1997) experiment. However, to keep the flexibility of SAMBA similar to 

that of the RJM, we constrained our fits to be symmetric (i.e., we used L=U). 

Stewart et al. (2005) also did not model the effects of the “wide” and “narrow” 

stimulus conditions separately, even though the RJM has a perceptual noise parameter 

that might be able to account for this manipulation. Certainly, SAMBA’s perceptual 

noise process (σP) can account for differences between the narrow and wide conditions, 

and so we estimated it fits to this data. We could have ignored the differences in the data 

from the wide and narrow spacing conditions, and therefore dropped the perceptual 

noise parameter from our fits. This would have had the advantage of allowing SAMBA 

and RJM’s predictions to be compared more easily, but the disadvantage of forcing a 

greater disparity in model complexity: without the stimulus noise parameter, SAMBA 

would use just six parameters compared with RJM’s eight.
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We assumed that frequency is represented on a simple logarithmic scale, and 

that the magnitude of psychophysical noise was σP=1.9% of stimulus magnitude. The 

psychophysical noise was more influential in the narrow than the wide condition, 

because the stimuli were only 6% apart in the narrow condition, so the 1.9% standard 

deviation more often resulted in confusion between adjacent stimuli. For parsimony, we 

also treated the narrow and wide conditions equally: the lower anchor was always 10% 

of the total stimulus range lower than the smallest stimulus and the upper anchor was 

always 10% of the stimulus range above the largest stimulus. To provide even greater 

model constraint, we assumed that this anchor placement was constant across set sizes 

(N=6, 8 and 10) as well as the stimulus spacing conditions. For example, in physical 

terms for the narrow stimulus spacing condition with set size N=10, the lower anchor 

was set at L=773Hz and the upper anchor at U=1369Hz. Finally, we also assumed that 

participants in Stewart et al.’s (2005) experiment always used the locally relative 

judgment mechanism in SAMBA. This assumption follows from the extraordinarily 

large accuracy bonus previously observed for repeat and near-repeat stimuli in these 

data.

In what follows, we illustrate the effects of set size and stimulus spacing on 

response frequency, accuracy, sensitivity (d’) and average bias (contrast and 

assimilation). Note that we have already discussed the effects of stimulus repetition and 

near-repetition on accuracy, in the “Critical Tests” section. All of the following different 

data fits, and the fits to repetition effects already reported, were modeled in SAMBA 

using a single set of parameters (shown in Table 3). 

The first new analysis examines response frequency. Figure 15 shows how often 

each response was given, separately for the wide and narrow conditions, and for the set 
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sizes N=6, 8 and 10. There is little difference in the shape of the response probability 

curves between the wide and narrow conditions. SAMBA captures the changes in 

response probability with set size, and the lack of change with stimulus spacing. Both 

SAMBA and RJM (see Stewart et al.’s figure 20) fit these data very well, and RJM 

performs slightly better, with an RMSE of 0.0062 compared to 0.0079 for SAMBA.

Figure 15. The probability of using each response, for narrow and wide conditions, and 
set size N=6, 8 and 10 (top to bottom, respectively). Central responses were used more 
frequently than extreme responses.

Figure 16 shows response accuracy for wide and narrow conditions, separately 

for set sizes N=6, 8 and 10. Note that the bow effect is apparent at every set size, and 

increases in depth with increasing set size. Performance was also worse for narrow than 

widely spaced stimuli. SAMBA accommodates the bow effect, the changes in accuracy 

with set size, and even the improved accuracy for wide over narrow spaced stimuli. The 

only apparent misfit is to the central four stimuli from the set size N=6 data under the 

wide spacing condition, where SAMBA underestimates performance. Quantitatively, 

SAMBA fits the data better than the RJM (RMSEs of .035 and .05, respectively). 
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Figure 16. Response accuracy as a function of set size and stimulus spacing and set 
sizes N=6, 8 and 10 (top to bottom, respectively). The dotted lines show the predictions 
of SAMBA, lines with filled circles are data from Stewart et al. (2005).

Figure 17 shows the accuracy data transformed to response sensitivity (d’). As 

for accuracy, SAMBA under-predicted performance on the smallest set size, and this 

effect is greatly exaggerated in the d’ data due to the nonlinear stretching effect of the 

inverse normal transformation for probabilities close to one. Indeed, the depth of the d’ 

bow for the data for set size N=6 (and, to a lesser extent N=8) is remarkably large in 

Figure 17, and not well-fit by our model. The better account of stimulus spacing effects 

and the d’ bow result in SAMBA fitting the data somewhat better than RJM (RMSEs of 

0.39 and 0.43 respectively).
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Figure 17. Response sensitivity (d’) as a function of set size and stimulus spacing and 
set sizes N=6, 8 and 10 (top to bottom, respectively). The dotted lines show the 
predictions of SAMBA, lines with filled circles are data from Stewart et al. (2005).

The response accuracy data (Figure 16) describe only correct responses, while 

the sensitivity data (Figure 17) use all responses, but collapse them into a single 

summary statistic. Figure 18 shows the probability of all responses to all stimuli – that 

is, full confusion matrices – along with SAMBA’s predicted values. As observed in 

Figures 15 and 16, the probability of a correct response (the highest peak for each line 

in each graph) decreases with increasing set size, and in the narrow compared to the 

wide stimulus spacing conditions. SAMBA captures the complete distribution of error 

and correct responses, including the effects of stimulus magnitude and narrow vs. wide 

stimulus spacing. However, for set size N=10 the model over-predicts the proportion of 

+/-1 responses to stimuli #2-#5, and for set size N=6 it under-predicts overall accuracy 

in the wide spacing condition. These same effects were apparent in the accuracy graph 

(Figure 16). RMSE for the confusion matrices favors RJM very slightly over SAMBA 

(0.038 vs. 0.041).
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Figure 18. Response matrices for the three different set sizes and the wide/narrow 
stimulus spacing conditions from Stewart et al. (2005). Each line represents the 
probability of a particular response, conditioned on the various stimuli.

Finally, we turn to the sequential effects of assimilation and contrast. Figure 19 

shows assimilation and contrast effects in Stewart et al.’s (2005) data, using the format 

introduced for Figures 4 and 14. Each graph plots the average error on the current trial 

as a function of the size of a preceding stimulus (separate lines). The x-axis shows the 

number of trials that have elapsed since that preceding stimulus was presented (“lag”). 

As usual, there is an assimilation effect at lag=1, with responses being biased towards 

the previous stimulus: if the previous stimulus was large, average error is positive, and 

vice versa. At longer lags (2+) contrast is observed, with responses biased away from 

the previously-seen stimuli. Most trends in the sequential data are captured well. 

SAMBA predicts assimilation at lag=1 followed by contrast at the longer lags. It also 

predicts larger effects in the narrow than the wide stimulus spacing, and larger effects 

with increasing set size. SAMBA’s predictions match the data just as well as the RJM’s 

(both RMSEs of 0.044).
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Figure 19. Assimilation and contrast effects in data from Stewart et al.’s (2005) data, 
separately for the three set sizes N=6, 8 and 10 and for wide and narrow stimulus 
spacing conditions. The lines in each plot show different magnitudes for preceding 
stimuli (see legends).

General Discussion

In interpreting data from absolute identification a distinction has been proposed 

between local and global phenomena. Local phenomena are those with short temporal 

duration, particularly effects of recent stimuli and responses on current decisions. 

Global phenomena are relatively stable over time, such as the effects of stimulus ranges 

and set sizes. Some theoretical accounts have focused on local processes (Holland & 

Lockhead, 1968; Lockhead & King, 1983; Laming, 1968, 1984), while others have 

focused on global processes (e.g., Braida et al, 1984; Marley & Cook, 1984; Lacouture 

& Marley, 1991, 1995, 2004). Several more recent models have incorporated both local 

and global processes (e.g., Nosofsky, 1997; Nosofsky & Palmeri, 1997; Petrov & 

Anderson, 2005). Recently, Stewart et al. (2005) took a more extreme position against 

global processing, affirming that absolute identification is based only on local processes 

of a particular type, namely, relative judgment, with no absolute or global processing 
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whatsoever (see also Laming, 1984; Lockhead, 2004).

We have described an extension of global, restricted-capacity models, developed 

in various papers by Cook, Karpiuk, Lacouture and Marley, to include local processes. 

SAMBA provides a comprehensive account of absolute identification because it predicts 

not only choices, but also the time taken to make them. Also, SAMBA includes an 

account of multiple sources of variability affecting decision processes, including 

sequential effects, and its predictions for response time (RT) are not restricted to just 

mean RT bow effects. Our analyses of data from Kent and Lamberts (2005), Lacouture 

(1997) and Lacouture and Marley (2004) show that SAMBA provides an accurate 

account of the entire distribution of response times as a function of stimulus magnitude. 

The model also provides an accurate account of asymmetries and sequential effects on 

RT distributions and response choices. The choice and RT effects are predicted by the 

same set of parameters, providing a more stringent test than fitting choice or RT data 

alone. 

Although SAMBA provides a close quantitative fit to dozens of phenomena in 

absolute identification, there are some places where it fails to fit the data, underlining 

the point that SAMBA is sufficiently constrained in its predictions to be falsifiable. One 

of the failures, over prediction of Stewart et al.’s (2005) false feedback effect, was 

relatively small and SAMBA still performed better than the only other model tested 

against this effect. Given that a natural extension of SAMBA’s learning mechanism 

(partial correction for feedback) predicts an appropriately smaller effect, this failure is 

not troubling. Two other small failures were associated with under prediction of bow 

effects involving the very largest stimulus for some conditions in Luce et al.’s (1982) 

and Lacouture’s (1997) data. The cause of such failures is unclear, although the 
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limitation to one stimulus in each case suggests some idiosyncratic factor may be in 

play, with increased performance perhaps related to external referents that were most 

salient for the largest stimuli. 

Two larger and more systematic failures concern responses to repeated stimuli in 

Stewart et al.’s (2005) Experiment 1 (see Figure 11) and the distribution of RT for 

incorrect responses in Lacouture’s (1997) data (see Figure 13). The latter failure is 

striking because our RT distribution fits for correct responses are of almost the same 

quality as achieved by the leading accounts of two-choice RT (e.g., Ratcliff & Smith, 

2004). One explanation for our poorer fit to incorrect responses is that two-choice RT 

models are typically not constrained to fit as wide a range of phenomena as were our fits 

to Lacouture’s data (e.g., sequential effects). A second explanation concerns our use of 

quantiles averaged over participants, necessitated by small sample sizes per participant. 

Averaging can spread quantiles when individual differences are present, which might 

particularly be a factor for incorrect responses as participants can vary markedly in their 

speed-accuracy tradeoff setting (see, e.g., Brown & Heathcote, 2003). Different settings 

are associated with systematic changes in the speed of error responses. In support of this 

explanation, we note that our fits to the error RT distributions for the individual 

participant in Lacouture and Marley’s (2004) Experiment 2 were quite good.

SAMBA performs well in fitting the accuracy and RT advantages for repeated 

stimuli in many data sets (e.g., Lacouture, 1997, and Luce et al., 1982). In Stewart et 

al.’s (2005) data, however, repetitions have a much larger advantage than SAMBA can 

predict. We noted earlier that SAMBA has no special mechanism for repeated stimuli. 

Given the difference between Stewart et al.’s results and others in the literature, this 

failure may not indicate a direct falsification. A possible explanation is that the stimuli 
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in Stewart et al.’s experiment differed in tone frequency, whereas Lacouture used line 

lengths and Luce et al. used tone intensity (loudness). It is possible that stimulus 

repetitions are more easily detected in frequency than in other continua; this suggestion 

is compatible with the existence of “critical bands” in the perception of frequency 

(Green & Swets, 1966). Further experimentation is required to investigate the effects of 

response repetitions on accuracy, in a range of different stimulus modalities.

SAMBA accounts for all standard sequence effects, global effects, and the effect 

of misleading feedback without any relative judgment process. Short-term memory in 

the decision stage predicts repetition and assimilation effects, whereas the short-term 

memory in the selective attention stage predicts contrast effects. A combination of these 

processes, along with restrictions on the available responses, explains the effects of 

manipulating the stimulus sequences found by Luce et al. (1982). Hence, SAMBA 

demonstrates that none of these effects necessarily implicate relative judgment. There is 

just one data pattern that does implicate relative judgment in SAMBA: the accuracy 

bonus sometimes observed for repeat and near-repeat stimuli. Although just a small part 

of the data, this effect has proven theoretically important, and not just for SAMBA. The 

same analyses proved critical for the RJM, prompting Stewart (2007) to modify the 

RJM to allow the stimulus two trials back to be used as the basis for relative judgment 

on some trials, instead of the memory for the stimulus one trial back. This modification 

is one step towards an extension where “any previous stimulus could be used [which 

would] introduce long-term representation of magnitudes into the model” (Stewart, 

2007, p. 536).

Future Developments

There are several aspects of SAMBA that warrant further development. That 
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development will be aided by the clear and testable predictions that arise from several of 

SAMBA’s assumptions about the cause and locus of certain phenomena. We will not 

provide an exhaustive discussion on these topics here, but instead restrict ourselves to a 

three aspects requiring further development, and to three novel predictions.

1. The selective attention mechanism. Like its precursors, SAMBA is based on 

the notion of global processing – the central tenet of the model is that stimuli are judged 

relative to a context that changes slowly over time. The precise nature of this selective 

attention context requires further study. For example, more experiments are required to 

determine which experimental factors cause participants to change their anchor 

positions, and how quickly these changes occur. Other experiments are required to 

investigate what factors affect the size, duration, and peak timing of contrast effects; 

these results will illuminate what factors affect the Poisson process. For example, it is 

an open question whether the dynamic aspects of that process operate in units of real 

time or trial time. If contrast effects operate on a time (rather than trial) basis, the peak 

magnitude for contrast effects could be manipulated by changing the response-to-

stimulus delay interval (RSI). If the RSI is made very short, the number of trials before 

peak contrast is reached will increase, shifting the location of peak contrast further to 

the right (i.e., lag=3 or lag=4). We cannot tell from the published details the precise RSI 

values used in previous data sets, so we are currently pursuing new experiments in 

which the intertrial interval is manipulated, either within or across experiments. 

2. Learning the stimulus representations. The mechanics of the mapping stage are 

completely determined by long term representations of average stimulus magnitude 

estimates. For example, if there are three evenly spaced stimuli, with anchors fixed at 

the lower and upper magnitudes, the average magnitude estimates are {0,½,1}. 
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Throughout the paper, except when addressing misleading feedback, we have assumed 

that these values are unvarying and accurate estimates of the true expected values. This 

assumption is clearly too strong, suggesting the need to develop a model of how the 

magnitude estimates are learned and maintained. We developed the beginnings of this 

model when addressing the false-feedback data from Stewart et al.’s (2005) Experiment 

2. For those data, we suggested a mechanism that adjusts magnitude estimates to align 

with feedback. This mechanism is similar to one of two mechanisms proposed by 

Treisman and Williams (1984). In future work, we will examine the addition of 

Treisman and Williams’ second mechanism (an assimilative process) into SAMBA. 

Together, these two processes provide a testable system for accommodating the effects 

of correct feedback, false feedback, and the absence of feedback (see also Mori & 

Ward’s, 1995, discussion of a similar use of Treisman & Williams’ mechanisms). Our 

preliminary investigations have offered the intriguing prospect that the use of Treisman 

and Williams’ adjustment (learning) mechanisms may eliminate altogether the need for 

the relative judgment process in SAMBA. This suggests that those effects previously 

considered indicative of local relative judgment (particularly the accuracy advantage for 

repeat and near-repeat stimuli), may be alternatively considered as evidence of a 

learning process that maintains and adjusts long term referents for magnitude estimates.

3. The causes of incorrect responses. We assume that the mapping stage is error free. 

The decision stage can produce errors, due to the influence of responses on previous 

trials on the starting points of the ballistic accumulators, but our estimated parameters 

suggest that this effect is smaller than that of the selective attention stage. For example, 

in fits to Lacouture’s (1997) data, only 23% of incipient choices were changed by the 

action of the decision phase (i.e., in 23% of cases, the final response generated by the 
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decision stage was different from the response corresponding to the maximum output of 

the selective attention and mapping stages). These assumptions stand in contrast to 

several prior models, which have attributed errors more directly to processing after a 

magnitude estimate is produced, such as in a decision mechanism (e.g., Kent & 

Lamberts, 2005; Lacouture & Marley, 1995, 2004; Nosofsky & Palmeri, 1997; 

Treisman & Williams, 1984). 

Predictions 

The current version of SAMBA leads to some novel empirical predictions, of which 

we present three.

1. Unequal stimulus presentation frequency (a test of the selective attention stage). 

The contrast mechanism associated with the selective attention stage makes the, perhaps 

surprising, prediction that if stimuli within a sub-interval of the range are presented 

more frequently, then those stimuli will eventually be identified more accurately at the 

expense of the remaining stimuli outside the sub-interval. We are aware of two 

experiments that tested the above prediction, one of which found changes in response 

bias, but not in d’ (Chase, Bugnacki, Braida, & Durlach, 1983) whereas the other found 

a small, but significant, effect on d’ (Nosofsky, 1983). We are currently working on 

sharper experimental tests of this prediction. 

2. Non-uniform stimulus spacing (a test of the mapping stage). The mapping stage 

of SAMBA predicts that stimuli that are spaced closer together, relative to other stimuli, 

will be more poorly identified. This prediction sounds trivial, but is not because it holds 

even when the closely-spaced stimuli are still well above threshold in comparative 

judgment tasks. We have interpreted Lockhead and Hinson’s (1986) data as supporting 

this prediction, although other interpretations have been advanced, e.g., the use of 
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appropriately selected cutpoints on a suitably constructed response variable (Stewart et 

al., 2005). Data from Lacouture (1977) illustrate that stimuli which are more widely 

spaced, relative to other stimuli, are more accurately identified.

3. The effect of inter-trial interval on assimilation (a test of the decision stage). Our 

assumption that assimilation is caused by passive decay in the ballistic accumulators 

leads to the prediction that assimilation effects will be smaller when the inter-trial 

interval is larger. To our knowledge, relevant absolute identification experiments have 

not been performed (but see DeCarlo, 1992, for related supporting theoretical and 

empirical work in magnitude estimation). Many absolute identification models would be 

able to accommodate this prediction, for example by simply adjusting parameter values 

associated with assimilation. However, SAMBA is currently the only model of absolute 

identification that makes a quantitative prediction for this effect as an a priori 

consequence its architecture. 

These three predictions follow from the current version of the SAMBA model, 

in which we have assumed that the distribution of selective attention is mostly 

uncontrolled by the participant. Instead, accumulators are incremented randomly, except 

for the re-direction that results in contrast. With these assumptions, SAMBA makes 

starkly different predictions for the effect of unequal stimulus presentations, in point 1 

above, and for non-uniform stimulus spacing, in point 2. That is, unequal stimulus 

presentations can improve discrimination for the more frequently presented stimuli, 

whereas non-uniform spacing is likely to decrease discrimination for the stimuli that 

have a decreased relative spacing in the non-uniform case. However, if attention were 

under sufficient strategic control this differential prediction for the two tasks would be 

reduced or eliminated. Therefore, stronger tests of the degree to which selective 
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attention is under strategic control are required, and are being pursued.

Concluding Remarks

In closing we note that our results have implications beyond absolute 

identification. Although strong sequential effects are present in choice and RT data from 

other paradigms (e.g., Gilden, 1997, 2001; Gilden, Thorton & Mallon, 1995; Kelly, 

Heathcote, Heath & Longstaff, 2001; Laming, 1968; Wagenmakers, Farrell & Ratcliff, 

2004, 2005), these sequential effects are not accommodated by existing choice RT 

models (but see Wagenmakers et al., 2004, for some possible directions). We have 

suggested a mechanism for assimilation effects that could be as easily implemented in 

any number of sequential sampling models of choice RT (such as those in Ratcliff & 

Smith, 2004) as it can be in Brown and Heathcote’s (2005) ballistic accumulation model 

– namely, by making the starting points of accumulation dependent on the response 

made on the previous trial. This mechanism moves choice RT models towards an 

explanation rather than an assumption of variability (i.e., start points are usually 

assumed to be variable with no testable explanation of the source of that variability). 

We have also suggested that longer-term sequential effects (e.g., contrast) can 

arise as a consequence of changes over trials in the inputs to the decision stage, and 

have provided a mechanism that predicts the magnitudes and variability of these inputs, 

at least in the context of absolute identification. At present, most choice RT models (see 

Smith, 1995; Smith, Ratcliff, & Wolfgang, 2004, for exceptions) simply assume the 

appropriate magnitudes and variability of inputs to fit data, with little motivation for 

how these inputs arise. The latter approach, although perhaps viable for two-choice data 

and a limited number of stimulus conditions, breaks down as the number of stimuli and 

responses increase, because of parameter proliferation. The SAMBA absolute 
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identification model, in contrast, requires no extra parameters to accommodate an 

increase in the number of stimuli and responses. Similar approaches to modeling inputs 

to decision processes in other paradigms would greatly simplify and expand the power 

of models of choice response time. 
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Abstract

Identification accuracy for sets of perceptually discriminable stimuli ordered on a single 

dimension (e.g., line length) is remarkably low, indicating a fundamental limit on 

information processing capacity. This surprising limit has naturally led to a focus on 

measuring and modeling choice probability in absolute identification research. We show 

that choice response time (RT) results can enrich our understanding of absolute 

identification by investigating a dissociation between RT and accuracy as a function of 

stimulus spacing. The dissociation is predicted by the SAMBA model of absolute 

identification (Brown et al., 2008), but cannot easily be accommodated by other 

theories. We show that SAMBA provides an accurate, parameter free, account of the 

dissociation that emerges from the architecture of the model and the physical attributes 

of the stimuli, rather than through numerical adjustment. This violation of the pervasive 

monotonic relationship between RT and accuracy has implications for model 

development, which are discussed. 
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In many choice paradigms, more accurate responses are associated with faster 

response times, and vice versa: e.g., in Stroop-interference tasks (e.g. Kane & Engle, 

2003; Wuehr & Frings, 2008), various naming tasks (Duyck, Lagrou, Gevers & Fias, 

2008; Roelofs, 2006) and absolute identification (Kent & Lamberts, 2005; Lacouture & 

Marley, 1995, 2004; Petrov & Anderson, 2005). As a result, it might be thought that 

models predicting choice probability can also account for RT through a simple 

monotonic transformation (e.g., inversion). In this paper, we focus on the relationship 

between RT and accuracy in the absolute identification of unidimensional stimuli, 

where, on each trial, participants identify a randomly chosen stimulus from a set of 

stimuli varying on only one dimension. For example, the stimuli might be a set of 10 

lines of varying lengths which are given the labels #1 through #10 from shortest to 

longest. 

We expand upon a previous finding that RT is not always a simple monotonic 

function of accuracy in absolute identification, when stimulus spacing is manipulated 

(Lacouture, 1997). We demonstrate the reliability of this result, and show that it 

provides a powerful test of different theoretical accounts of absolute identification. This 

dissociation is predicted by the SAMBA theory (Brown, Marley, Donkin & Heathcote, 

2008), which models both choice probability and choice response time. SAMBA 

predicts the violation of the pervasive negative correlation between RT and accuracy 

because of one of its components – the mapping model developed by Lacouture and 

Marley (1995). We show that SAMBA accounts for the dissociation without parameter 

adjustment, because its account emerges from the architecture of the model and the 

physical attributes of the stimuli.

There are numerous benchmark phenomena for the absolute identification of 
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unidimensional stimuli, when the stimuli are equally spaced. For instance, when mean 

RT and accuracy are plotted as functions of each stimulus' ordinal position within the 

set, one observes the ubiquitous “bow effect” – a U-shape for accuracy and an inverted 

U for RT. In such plots, stimuli associated with shorter RTs are always associated with 

higher accuracy, and vice versa. The inverse relationship between accuracy and RT is 

also observed in many other kinds of plots of absolute identification data, for example, 

if accuracy and mean RT are plotted as functions of: the difference between successive 

stimuli; the number of trials that have intervened since the current stimulus was last 

presented; or the number of stimuli within the set (Brown et al., 2008; Kent & 

Lamberts, 2005; Lacouture & Marley, 1995, 2004). 

Brown et al. (2008) developed SAMBA to account for the benchmark empirical 

choice and RT phenomena. SAMBA was intended to be a complete account of absolute 

identification, one that included all stages from a psychophysical stimulus 

representation through to response selection, and one that modeled all of the important 

benchmark phenomena from the field. Brown et al. also pointed out that SAMBA makes 

some surprising and testable predictions, including that increasing the space between 

two adjacent stimuli will result in increased accuracy for those two stimuli, but will 

have little impact on RT. In the following sections we first provide a brief overview of 

SAMBA, followed by a detailed account of this particular prediction. We then examine 

data from Lacouture (1997) that confirm the prediction, and show SAMBA’s fit to the 

data. We conclude by discussing the implications of these results for theoretical 

development in the field of absolute identification. 

SAMBA
SAMBA (Brown et al., 2008) is composed of three stages: the selective attention 
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stage, the mapping stage and the decision stage. The selective attention stage of 

SAMBA begins with a relatively impoverished psychophysical representation of a 

stimulus and produces an estimate of its magnitude. This estimate is constructed using 

Marley and Cook’s (1984, 1986) theory, which posits that stimulus magnitudes are 

judged relative to a context defined by upper and lower “anchors”, which are long term 

memories for the magnitues of very large and very small stimuli (call these L and U). 

On each trial, the magnitude of the stimulus is judged relative to the overall context, 

producing a noisy estimate. This magnitude estimate falls in the interval [0,1], and the 

average magnitude estimate for any given stimulus (over repeated presentations) is 

given by the linear function which maps the interval [L,U] onto the interval [0,1]. For 

example, in an experiment with ten equally spaced stimuli, if stimulus #5 were 

presented, a magnitude estimate of close 0.45 might be expected, but on any given trial 

the estimate will vary somewhat from this average. The context used to judge stimuli is 

maintained by the observer using a noisy memory rehearsal process. The noise in this 

process is one of the key elements that introduces inaccuracy into SAMBA’s predicted 

responses.

SAMBA’s mapping stage transforms the magnitude estimate produced by the 

selective attention stage into response strengths, one for each possible response. It 

operates like a highly constrained set of tuning curves, where each curve produces a 

response strength that depends on how closely the observed magnitude estimate 

matches a referent for the given response. SAMBA assumes the referents are obtained 

by averaging magnitude estimates associated with repeated presentations of each 

stimulus. The mapping phase operates similarly to all tuning systems, in that the largest 

response strength is always assigned to the response whose referent most closely 
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matches the observed magnitude estimate. For example, a magnitude estimate of 0.45 

might be closest to the long-term referent for stimulus #5 and so the largest response 

strength will be assigned to response #5. The outputs from the mapping phase are used 

as inputs for the decision stage of SAMBA, which uses a set of ballistic accumulators, 

one for each possible response (Brown & Heathcote, 2005). The ballistic accumulators 

instantiate a noisy max-picking algorithm. The chosen response will usually be the one 

with largest response strength (from the mapping stage), but not always. Larger 

response strengths are associated with faster responses, and bigger differences between 

response strengths are associated with more accurate “pick-the-max” behaviour.

In addition to these basic elements, SAMBA also includes mechanisms for 

sequential effects. For example, activity in the ballistic accumulators in the decision 

phase is assumed to decay slowly between trials. Amongst other things, this means that 

the response selected on the previous trial will have an advantage on the current trial, as 

observed in data. However, for our purposes the critical element of SAMBA is the bow 

mapping phase. Lacouture and Marley (1995) developed the mapping from a theoretical 

viewpoint. That is, they started out with a list of mathematical properties that any 

reasonable set of tuning curves should have. For example, for any reasonable set of 

tuning curves the greatest response strength should always assigned to the response 

whose long-term referent most closely matches the incoming magnitude estimate. 

Obviously, a great variety of tuning curves would satisfy this property, so other 

properties were included to constrain and simplify the solution, including: all response 

strengths should always be positive; the tuning curves should use the simplest 

functional form possible – a straight line; and the set of curves should be symmetric, as 

long as the referents are symmetric. Lacouture and Marley developed their bow 
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mapping as a set of linear tuning “curves” which satisfied all these constraints. Their 

solution was very powerful because it was also parameter free, being entirely specified 

by the values of the long term referents for each stimulus’ average magnitude estimate. 

The mapping solution also predicted the ubiquitous bow effects observed in both 

response time and accuracy for absolute identification, even though these properties 

were not included as constraints for its development.

Of course, other solutions to the basic tuning curve problem could be developed. 

In particular, one may relax the simplifying constraints imposed by Lacouture and 

Marley (1995), by allowing more complex nonlinear forms for the tuning curves. Such 

solutions would probably also be able to accommodate the peculiar accuracy-RT 

dissociation we discuss below, but it is difficult to justify their extra complexity. From 

this point of view, one may consider the bow mapping as the simplest and most 

constrained set of tuning curves available, with the added benefit that they allow our 

model to accommodate all the required empirical data.

SAMBA’s Predictions for Unequally Spaced Stimuli
SAMBA makes the prediction that if the spacing between two adjacent stimuli is 

increased, with other stimulus spacings unchanged, then these particular stimuli are 

identified with higher accuracy, but RT is relatively unaffected. This prediction is a 

consequence of Lacouture and Marley’s (1995) mapping solution. When stimuli are 

unequally spaced, the long-term referents (average magnitude estimates) that define the 

mapping stage will reflect the unequal spacing. For example, first consider a standard 

absolute identification experiment with 10 equally spaced stimuli, and suppose that 

participants place their lower and upper anchors at a distance equivalent to one stimulus 

separation above and below the stimuli at the upper and lower end of the range, 
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respectively. In this case, the selective attention phase of SAMBA produces average 

magnitude estimates given by the linear mapping of the stimulus magnitudes onto the 

unit interval, namely: { 11
1 , 11

2  … 11
10 }. However, now imagine that a set of 10 unequally 

spaced stimuli is constructed by first taking 14 equally spaced stimuli, then removing 

the central four. This stimulus set has a large central gap between stimuli #5 and #6. The 

selective attention phase of SAMBA then produces average magnitude estimates that 

respect the unequal stimulus spacing, namely { 15
1 , 15

2 ,…, 15
5 , 15

10 ,…, 15
14 }. Since the 

average estimates define the mapping solution, the spacing of the stimulus set is 

naturally encoded into the operation of the model.

On each trial of an absolute identification experiment, the selective attention 

phase produces a noisy magnitude estimate, say z. The mapping solution transforms this 

estimate into a response strength Rj for each of the j possible responses according to the 

formula Rj=(2Yj-1)z-Yj
2+1. The function is completely defined by Yj, which is the 

average magnitude estimate for the jth stimulus – the long term referent for response j. 

Figure 1 illustrates the mapping solutions that arise from both the equally spaced and 

unequally spaced sets of ten stimuli. In both cases, the mapping supports the basic 

property, that if the observed magnitude estimate is close to the average magnitude 

estimate for stimulus j, the highest response strength will be assigned to response j. For 

example, suppose on a particular trial stimulus #5 is presented, and the selective 

attention phase produces a magnitude estimate of .45 units. In both the equal and 

unequal cases, the large black dot shows that the greatest response strength in this case 

is assigned to response #5 (i.e., the highest line above x=.45 is the one corresponding to 

the fifth response). It may strike the reader as surprising, on first glance, that the greatest 

response strength for each response is always assigned at one extreme or the other (x=0 

258



or 1). For example, response #5 is the maximum-strength response at x=.45, but the 

greatest response strength is assigned to response #5 when x=0. This property arises 

from the severe simplifying constraints imposed by Lacouture and Marley (1995), in 

particular that the tuning curves should be linear. It is testament to the power of their 

solution that it still fits the data so well, even with such constraint.

Figure 1. Mapping solution for equally spaced stimuli (left panel) and a set of ten 
stimuli with a central gap in stimulus spacing equivalent to four stimuli (right panel). 
Each line shows how the response strength varies with input magnitude estimate, for 
one of the 10 possible responses.

The difference in the mapping solutions for equally and unequally spaced stimuli 

leads to the prediction that is our focus. Consider again stimulus #5, which is adjacent to 

the large central gap in the unequal stimulus set (a similar argument applies to stimulus 

#6). In the equally spaced condition, response #5 is the maximum-strength response1 for 

any magnitude estimates in the interval z ∈ [ 11
5.4 , 11

5.5 ]. However, in the unequally 

spaced condition, response #5 is the maximum-strength response for a larger range of 

magnitude estimates: z ∈ [ 15
5.4 , 15

5.7 ]. Given that the response with the largest strength is 

1  It is elementary to show that responses j and j+1 have equal response strengths at the point that is 
midway between the long term referents for stimuli j and j+1, and this holds for both equally spaced 
and unequally spaced stimulus sets.
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usually the response made by SAMBA’s decision phase, accuracy is predicted to be 

higher for stimulus #5 in the unequally spaced condition than in the equally spaced 

condition. This is mostly due to the prediction that stimulus #5 will not often be 

confused with stimulus #6 (and vice versa). For example, for the unequally spaced 

stimuli in Figure 1, the average magnitude estimate for stimulus #5 is 15
5 . Due to the 

properties of the rehearsal stage, it is rare that if stimulus #5 were presented that the 

magnitude estimate would be greater than 15
5.7 , and hence fall in the region where 

response #6 would receive the largest response strength. 

Turning now to predictions for response time, Figure 1 shows that the size of the 

response strength produced for stimulus #5 is about the same in both the equal and 

unequal stimulus spacing conditions. In the decision stage of SAMBA, the response 

strength for response #5 determines the rate of increase of activation in the 

corresponding ballistic accumulator. All other parameters being equal, response time is 

inversely related to the response strength, so SAMBA predicts about the same response 

times for stimulus #5 in both the equal and unequal spacing conditions. To be 

numerically precise, the average magnitude estimate associated with stimulus #5 in the 

equally spaced condition is 

€  

5
1 1 , and this results in a maximum response strength being 

assigned to response #5, a strength of (2

€  

5
1 1 -1)

€  

5
1 1 -(

€  

5
1 1 )2+1=0.752. In the unequally spaced 

case, stimulus #5 generates an average magnitude estimate of 

€  

1
3 , but again the 

maximum response strength is assigned to response #5, (2

€  

1
3 -1)

€  

1
3 -(

€  

1
3 )2+1=0.778. 

Critically, in both cases, the response strengths assigned to the correct response for 

neighbouring stimuli is larger: when stimulus #4 is presented, the average response 

strength assigned to response #4 is 0.769 in the equally spaced condition and 0.804 in 
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the unequally spaced condition. Since predicted RT is inversely related to response 

strength, SAMBA predicts the required dissociation, that responses to stimuli near the 

large gap will be more accurate than for neighbouring stimuli, but the corresponding 

response times will be slower.

Empirical Evidence
Several researchers have manipulated stimulus spacing, including Lockhead and 

Hinson (1986) and Lacouture (1997). Brown et al. (2008) demonstrated that SAMBA 

provides a parsimonious account of the choice probabilities of Lockhead and Hinson 

(RTs were not recorded). Lacouture’s data set included RT measurements, allowing us 

to test SAMBA’s prediction of the effect of stimulus spacing on both choice 

probabilities and RT. Participants in Lacouture’s experiment spent the first hour in a 

standard absolute identification experiment, with 10 equally spaced stimuli. Each 

participant then spent a second hour in one of several conditions in which physical 

properties of the stimuli were manipulated. Brown et al. presented fits of SAMBA to 

data from the first session (equal spacing), but until now the unequal spacing conditions 

have never been modeled. Since Lacouture published his findings, several important, 

integrative theories of absolute identification have been published, some of which have 

even addressed the effects of unequal stimulus spacing on response choices, but none of 

which have addressed the effects of stimulus spacing on response times. This leaves a 

gap in the theoretical development, especially given that Lacouture’s data present such a 

challenging test for models.

Participants in the second session of Lacouture’s (1997) experiment experienced 

one of six conditions, four of which employed unequally spaced stimuli. These four 

conditions had larger gaps introduced either in the centre (between stimuli #5 and #6) or 
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at the edges (between stimuli #2 and #3 and stimuli #8 and #9). The gap location was 

crossed with a manipulation of gap size (large or small) to create the four conditions: a 

large central gap (C-L); a small central gap (C-S); large extreme gaps (E-L); and small 

extreme-gaps (E-S). The top row of Figure 2 provides a schematic illustration of the 

stimuli from these four conditions (for actual stimulus lengths, see Lacouture’s Table 1). 

The second and third rows of Figure 2 show data from the four spacing conditions, 

replicating Lacouture’s Figure 4. The data are represented by solid circles, with error 

bars showing +/-1 standard errors, calculated assuming normal distributions across 

subjects for mean RT and binomial distributions for accuracy. In each graph, vertical 

arrows show the locations of the larger gaps, and the dashed lines show predictions 

generated by SAMBA. The second row of Figure 2 shows response accuracy separately 

for each response and the third row shows mean correct response times. Notice that 

accuracy is greater for stimuli adjacent to gaps, and the effect is more pronounced in the 

large spacing conditions than the small spacing conditions. However, the improved 

accuracy is never accompanied by faster response times, contrary to the typical inverse 

RT-accuracy relationship.
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Figure 2. The top row shows a schematic representation of the stimuli used by 
Lacouture (1997). C-L refers to the ‘large central-gap’ and C-S to the ‘small central-gap’ 
condition, E-L refers to the ‘large extreme-gaps’ condition, and E-S ‘small extreme-
gaps. The second row shows response accuracy and the third row shows mean RT for 
correct responses, both as functions of response. Data are shown with solid lines and 
points, and SAMBA’s fits with dotted lines.

When analyzing response choices from absolute identification tasks, it is 

customary to calculate sensitivity (d’) instead of raw percent correct (Luce, Nosofsky, 

Green and Smith, 1982). Sensitivity provides a bias-free measure of how often 

successive pairs of stimuli are confused, that is, how often stimuli #1 and #2 are 

confused, and stimuli #2 and #3, and so on up to stimuli #9 and #10. For any given pair, 

say stimuli #4 and #5, d’ is calculated in the usual manner, using hit and false alarm 

rates, where “hits” are defined as responses #5 or greater, when stimulus #5 is 

presented, and “false alarms” are defined as responses #5 or greater, when stimulus #4 

is presented. To ensure that the effects observed in Lacouture’s (1997) data were not due 

to a response bias effect, we calculated d’ values for each stimulus pair, shown in Figure 

3. Graphing the data using d’ shows an even more pronounced effect of stimulus 

spacing – stimuli that are separated by large gaps were almost never confused with one 

another.
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Figure 3. Sensitivity (d’) for each stimulus pair in the four unequally spaced stimulus 
conditions from Lacouture (1997). Error bars show standard errors assuming normally 
distributed d’ values across participants.

Figures 2 and 3 demonstrate a clear dissociation – stimuli separated by large 

gaps enjoy an accuracy (and sensitivity) bonus, but no corresponding RT bonus. To 

confirm the statistical reliability of this dissociation, we calculated binomial tests. We 

used binomial tests because they provide robust analyses that directly test the ordinal 

hypotheses we entertain, without problematic distributional assumptions. We carried out 

two tests, one for the dissociation of response times and raw response accuracy and the 

other for the dissociation of response times and d’.  We examined the accuracy (or d’) 

and RT values separately for each participant, and counted how frequently the 

dissociation in question was observed on a single-participant basis – that is, how often 

we observed increased accuracy for stimuli near large gaps (relative to neighbouring 

stimuli) without a corresponding increase in RT. For each of the sixteen participants in 

the E-S and E-L conditions, there were two opportunities to observe the dissocation – 

two increased stimulus gaps in each condition – and for each of the other sixteen 

participants in the C-S and C-L conditions there was one opportunity. For the raw 

accuracy data, under a null hypothesis of no relationship, the probability of observing 

the dissociation by chance is 1 in 16 at each opportunity, but we observed the 

dissociation 10 out of 48 times, significantly more than the three that would be expected 
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by chance (p=.0015). For the d’ data, the probability of observing the dissociative 

ordering by chance is 1 in 12, but we observed the dissociation 20 out of 48 times, again 

significantly more than would be expected by chance (p<10-10). These tests are quite 

convincing, especially given the limited number of participants available (only eight in 

each condition) and the reduced power afforded by robust non-parametric statistical 

tests. Note that those participants who did not demonstrate the critical dissociation on 

single-participant level did not necessarily demonstrate the opposite (i.e., the usual 

inverse accuracy-RT relationship). In fact, of the 96 opportunities to observe the usual 

inverse relationship in these critical tests, we observed it only once – for the other 95 

opportunities, we either observed random ordering due to noise (65 times) or the 

accuracy-RT dissociations counted above (30 times).

Turning now to predictions from SAMBA, we can see from the dashed lines in 

Figures 2 and 3 that the model provides a good qualitative account of the data, capturing 

the observed dissociation between accuracy and RT. The model also provides a very 

close quantitative fit to the data, which is all the more surprising given the strong 

constraints we imposed on the parameters. To fit SAMBA to Lacouture’s (1997) 

unequal spacing conditions, we began with the parameters reported by Brown et al. 

(2008) that were used to fit the standard (equal spacing) condition from the first session 

of Lacouture’s experiment. Only three parameters were adjusted for the fits presented in 

Figure 2, and even these parameters were irrelevant in capturing the critical dissociation 

between accuracy and RT – all three parameters were instead related to the effects of 

practice, capturing differences in the data between the first and second experimental 

sessions. Firstly, we dcreased the response threshold parameter for SAMBA’s decision 

phase to be 90% of the value it took for the first experimental session, reflecting that 
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participants may have become a little less careful in the second session of the 

experiment. Secondly, we had previously noted asymmetry in the data: in the first 

experimental session, responses were slower and less accurate for the large stimuli than 

the small stimuli. SAMBA accounted for the asymmetry by setting the lower anchor 

close to the smallest stimulus (L was set at 95% of the magnitude of the smallest 

stimulus) but the upper anchor quite far away from the largest stimulus (U was 62% 

larger than the largest stimulus). In the second experimental session the asymmetry 

disappeared: note that in Figure 2 accuracy and RT are about the same for the smaller 

stimuli as for the larger stimuli. To capture this return to symmetry, we set the lower 

anchor to 99% of the magnitude of the smallest stimulus, and the upper anchor to 101% 

of the magnitude of the largest stimulus. One possible interpretation for the change in 

symmetry between sessions could be improvement due to practice. Although absolute 

identification is mostly immune to practice effects, Rouder, Morey, Cowan and Pfaltz 

(2004) showed that learning in absolute identification is possible. Donkin, Dodds, 

Brown and Heathcote (submitted) have shown that this is especially true for lines of 

varying length, as used by Lacouture. This explanation is consistent with the change in 

parameters of SAMBA used to achieve the reported fits. The upper and lower anchors, 

U and L, were moved closer to stimuli #1 and #10 in the unequal spacing conditions, 

indicating that participants improved their knowledge of the task in the second session 

relative to the first.

It is notable that a single set of parameters was used to fit all four different 

spacing conditions. The differences between spacing conditions are completely 

determined by the properties of the stimulus spacing, which in turn determine the 

referents. For example, referents for the large central-gap condition are based on long-
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term averages of magnitude estimates produced by SAMBA’s selective attention phase, 

and these magnitude estimates naturally reflect the large gap between stimuli #5 and #6. 

The same mechanism applies to the other stimulus spacing conditions. Given the 

constraints we imposed on the model parameters, the quantitative fits are quite good, 

although SAMBA overpredicts the improvement in d’ in the C-L condition.

Alternative Models
There are four recent models of absolute identification, besides SAMBA, that 

make predictions for both choice and RT. Two of these models are exemplar based 

accounts of general categorization behavior, applied to absolute identification, which 

can be seen as a special case of categorization. These two models are the exemplar-

based random walk (EBRW: Nosofsky, 1997; Nosofsky & Palmeri, 1997) and the 

extended generalized context model for response times (EGCM-RT: Kent & Lamberts, 

2005, Lamberts, 2000). Both models predict that increased accuracy should always be 

associated with faster RT, at least when parameters unrelated to stimulus properties are 

kept constant. Lacouture’s (1997) dissociation of RT and accuracy was observed within 

blocks in which only stimulus magnitude was manipulated, so it would seem that these 

theories are incapable of accounting for the dissociation between accuracy and RT with 

unequal stimulus spacing (in particular, see Equation 5 in Nosofsky, 1997, and Equation 

12 in Lamberts, 2000). The EBRW and EGCM-RT both predict the observed increase in 

accuracy with increased spacing between stimuli, caused by reduced similarity between 

stimulus representations. However, both models also predict an associated decrease in 

RT, which was not observed in Lacouture’s data. It is possible that, with carefully 

chosen parameter values, these models could decrease the size of the predicted misfit. 

That is, there may exist parameter values that allow the models to predict increased 
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accuracy near large gaps, accompanied by only a small decrease in RT for those same 

stimuli. Even if these parameter values exist, the models still make incorrect predictions 

about the (statistically reliable) ordering of the data values observed above. 

Another absolute identification model that predicts RT is Karpiuk, Lacouture 

and Marley’s (1997) limited capacity, wave equality, random-walk model. This model is 

similar to SAMBA, in that it uses Marley and Cook’s (1984) rehearsal model, but in 

place of SAMBA’s mapping stage, Karpiuk et al. used a set of tuning curves for each 

response. Tuning curves, specified by free parameters, operate like SAMBA’s mapping 

stage but with less constraint and greater flexibility. For this reason, it is quite likely that 

Karpuik et al.’s model is capable of capturing (but not predicting) the observed 

dissociation between RT and accuracy. Lacouture and Marley’s (1995, 2004) mapping 

model employs the same mapping functions as SAMBA, and so it also predicts the 

dissociation between RT and accuracy.

Ashby (2000) developed a theory of categorization that includes predictions for 

RT as well as choices. Other versions of this theory have been applied to absolute 

identification data (Ashby & Lee, 1991), although the RT-inclusive version has not. 

Similarly to the exemplar-based categorization models, Ashby’s theory predicts a 

monotonic relationship between mean RT and accuracy in categorization (see, e.g., 

Ashby, 2000, p.321 for a summary of the extensive successes, and limited failures, of 

this prediction) and, therefore, does not accommodate the observed dissociation, 

without modification. We note also that extant absolute identification models (other than 

SAMBA) that predict both accuracy and RT fail to predict other key phenomena. For 

example, none of the models described above predict the well-known sequential effects 

in absolute identification data, such as assimilation and contrast. 
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Discussion
We have presented and tested a prediction arising from the mapping stage of 

SAMBA. The prediction of a dissociation between accuracy and RT is surprising due to 

the regularity with which a monotonic relationship has been observed. Nevertheless, 

SAMBA’s prediction is confirmed by data from Lacouture’s (1997) previously 

unaddressed unequal spacing experiments. SAMBA accounts for the dissociation 

between RT and accuracy under different spacing conditions, and provides an 

impressive quantitative fit, given that no parameter changes were made between 

conditions, and all but three parameters were fixed at values estimated using data from a 

different condition. 

In most empirical and theoretical work on absolute identification, response times 

have received much less attention than response choices. Despite an empirical research 

history pre-dating Miller’s (1956) seminal review, and theoretical accounts existing for 

at least 50 years, models have only begun to address RT in the last 15 years. The 

disinterest in RT is underlined in Stewart, Brown and Chater’s (2005) model summary 

table (p.886), where only 3 out of the 14 models reviewed made predictions about RT. 

This neglect is most likely due the belief that RT has little utility for discriminating 

models, which might have been true if a systematic monotonic inverse relationship 

between RT and accuracy always held. However, Lacouture’s (1997) results show that 

this is not the case, and that RT and accuracy data together provide greater model 

constraint than accuracy data alone. In particular, Lacouture’s data provide a strong test 

for any theoretical account of absolute identification that attempts to account for both 

choice and RT. SAMBA passes this test, confirming a prediction made by Lacouture 

and Marley’s (1995) highly constrained method of obtaining tuning curves, adopted by 

SAMBA. Hence, Lacouture and Marley’s method, motivated entirely independently on 
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theoretical grounds, not only predicts the ubiquitous bow effects found in absolute 

identification, but also a heretofore unexplored dissociation between speed and 

accuracy.  
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Appendix: The Latencies of Incorrect Responses

The relative speeds of correct and incorrect responses have proven very 

illuminating in the development of theories of choice response time (see, e.g., Brown & 

Heathcote, 2005, 2008). Theoretical accounts of response times in absolute 

identification are less well developed, so the fine model discrimination afforded by the 

analysis of error RT may yet be premature. Nevertheless, we note here two interesting 

phenomena related to incorrect RTs in Lacouture’s (1997) data. Firstly, response times 

were slightly, but reliably, slower for incorrect responses than correct responses in the 

second session of Lacouture’s experiment (mean difference 29msec, t(38)=2.5, p<.01). 

Secondly, the relative speed of correct and incorrect responses changed systematically 

with the stimulus magnitude. For extreme stimuli (#1 and #10), incorrect responses 

were much slower than correct responses (mean difference 269msec, t(46)=7.5, p<.001) 

but for central stimuli (#5 and #6) there was almost no difference (mean difference 

10msec, t(46)=0.3, p>.05). The relative speeds of correct and incorrect responses are 

captured well by SAMBA – as a brief illustration, Figure A1 shows mean error response 

times along with SAMBA’s predictions using the same format as Figure 2. The model 

captures the global qualitative trends in the data, but misses some of the finer 

quantitative properties, such as the tendency for some extreme responses to be 

associated with very fast errors (e.g., #1 in C-L condition and #10 in E-S and C-S). 
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Figure A1. Mean response times for incorrect responses, along with predictions from 
SAMBA. Error bars show +/-1 standard error assuming that mean RT is normally 
distributed across participants.

We do not take this goodness of fit to be as impressive as SAMBA’s ability to fit 

the effects of stimulus spacing that is our main focus. While the patterns of fast and 

slow errors may appear complex at first glance, they are less theoretically challenging 

than might be imagined. For example, incorrect response times were slower than correct 

response times, as predicted by SAMBA. Other models of absolute identification do not 

predict this in their current forms. For example, Kent and Lamberts’ (2005) model uses 

a random walk, which is constrained to predict equal response times for correct and 

incorrect responses (see, e.g., Ratcliff, 1978). However, this limitation is not central to 

Kent and Lamberts’ model, and can easily be remedied by the addition of certain 

variance components to its decision phase (as described by Ratcliff). Similarly, any 

model of absolute identification that predicts the ubiquitous bow effects – longer RT for 

central responses and shorter RT for extreme responses – will also successfully 

accommodate our second observation. That is, error responses will necessarily be slow 

for extreme stimuli, because those incorrect responses are less extreme (usually #2 and 

#9, rather than #1 and #10, for example). For these reasons, we think that a detailed 
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comparison of empirical results with theoretical predictions for incorrect response times 

may yet be premature for models of absolute identification.
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